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A B S T R A C T   

The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical 
applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised 
WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted 
the ACROBAT challenge, based on the largest WSI registration dataset to date, including 4,212 WSIs from 1,152 
breast cancer patients. The challenge objective was to align WSIs of tissue that was stained with routine diag-
nostic immunohistochemistry to its H&E-stained counterpart. We compare the performance of eight WSI 
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registration algorithms, including an investigation of the impact of different WSI properties and clinical cova-
riates. We find that conceptually distinct WSI registration methods can lead to highly accurate registration 
performances and identify covariates that impact performances across methods. These results provide a com-
parison of the performance of current WSI registration methods and guide researchers in selecting and devel-
oping methods.   

1. Introduction 

Computational pathology is likely to significantly impact current 
routine clinical workflows in pathology labs. Applications range from 
the automation of routine procedures such as cancer detection and 
Gleason grading of prostate biopsies (Bulten et al., 2022, 2020; Ström 
et al., 2020) to the prediction of information that pathologists cannot 
obtain from visually inspecting tissue, including prognosis (Foersch 
et al., 2023; Wang et al., 2022), treatment response (Foersch et al., 
2023) molecular subtypes (Couture et al., 2018; Kather et al., 2020) 
or gene expression (Fu et al., 2020; Schmauch et al., 2020; Wang et al., 
2021; Weitz et al., 2022b). The rapid advancements of these methods in 
recent years have been enabled by progress in computer vision and the 
advent of digital pathology. In digital pathology, glass slides with tissue 
samples are digitised using whole-slide scanners, often at a magnifica-
tion of 400, referred to as 40X, resulting in whole-slide-images (WSI) 
with a gigapixel scale. Pathologists then assess WSIs on a screen instead 
of physical glass slides with a microscope. Currently, the vast majority of 
methods in computational pathology are limited to WSIs of tissue 
stained with haematoxylin and eosin (H&E) (Bera et al., 2019),(Baxi 
et al., 2022). However, the analysis of immunohistochemically (IHC) 
stained tissue, e.g. for biomarker scoring, is an essential component of 
the diagnostic workflow. The combination of information from multiple 
stains has the potential to unlock both novel research and clinical ap-
plications. Examples in research are stain-guided learning (Su et al., 
2022; Turkki et al., 2016; Valkonen et al., 2020), virtual staining (Bur-
lingame et al., 2020; de Haan et al., 2021; Khan et al., 2023; Wieslander 
et al., 2021), the analysis of multiplex stained histology (Lin et al., 2023; 
Schapiro et al., 2022), 3D reconstruction (Kartasalo et al., 2018; Song 
et al., 2013) and the transfer of annotations or segmentations between 
WSIs (Duanmu et al., 2022; Huang et al., 2023; Weitz et al., 2023a). In 
the clinical setting, multi-stain information can aid in the identification 
of regions of interest (such as invasive cancer) during biomarker scoring, 
or the investigation of suspicious lesions at resection margins. 

The combination of information from multiple WSIs requires the 
spatial alignment of corresponding tissue areas between WSIs, which is 
referred to as WSI registration. WSI registration is a particularly chal-
lenging registration task due to the gigapixel scale, differences between 
the appearances of differently stained tissue, changes in appearance, 
structure and morphology between tissue regions in non-consecutive 
sections and the introduction of artifacts, tears and deformations dur-
ing processing of the micrometer-thin tissue sections. The main com-
ponents of non-rigid multi-modal WSI registration methods are image 
pre-processing, a method that quantifies similarity and an optimiza-
tion technique. Current WSI registration methods can be broadly cate-
gorized into feature-based and intensity-based methods. Feature-based 
methods extract local descriptors in both images of an image pair, 
attempt to find corresponding descriptors and minimize the distance 
between those. Intensity-based method aim to maximize a similarity 
metric in typically pre-processed image pairs. Common examples of 
these metrics are cross-correlation or convolution, mutual information 
and normalized gradient fields. Furthermore, it is common to split the 
registration into a coarse initial alignment, followed by a deformable 
registration step. There are many possible combinations and variations 
of these techniques, without a consensus on optimal choices. Further-
more, emerging deep learning methods are now also applied in WSI 
registration. While there has been research in this area for many years, 
non-rigid multi-modal WSI registration is therefore an active field of 

research. 
To establish a comparison of the performance of current WSI regis-

tration methods in data originating from clinical workflows, we orga-
nized the ACROBAT (Automatic Registration of Breast Cancer Tissue, 
acrobat.grand-challenge.org) challenge. For this challenge, we pub-
lished the currently largest publicly available data set of matched H&E 
and IHC WSIs, consisting of 4212 WSIs in total (Weitz et al., 2022a) and 
generated over 54,000 landmark points with 13 annotators. All WSIs in 
the data set originate from tissue sections that were generated during 
routine diagnostic workflows at the time of initial diagnosis. An example 
of an H&E WSI and corresponding IHC WSIs is depicted in Fig. 1. The 
objective of the challenge was to align tissue in the IHC WSIs to corre-
sponding tissue in the H&E WSIs. WSI registration has previously been 
addressed in the ANHIR challenge (Borovec et al., 2020). While the 
ANHIR challenge made valuable contributions to the field of WSI 
registration, it was limited by the high quality of sections and WSIs, 
which is not representative of clinical material, as well as by the avail-
ability of both training and test data with only 355 WSIs in total, albeit 
originating from a wide variety of organs and stains. 

Here, we describe the results of the ACROBAT registration challenge, 
in which we assess the performances and limitations of eight WSI 
registration algorithms. We evaluated accuracy and robustness of each 
method and performed a detailed analysis of the impact of different 
clinical covariates, such as cancer grade and biomarker statuses, and the 
registered tissue types, which to our knowledge is the first analysis of 
this kind in the histopathology domain. We expect that the results of this 
challenge will clarify the performance of current methods for multi-stain 
WSI registration and provide evidence for the integration of the 
analyzed methods into future research studies and clinical applications. 
The findings of this study can furthermore guide the development of WSI 
registration solutions that generalize between stains and tissue types and 
that can be applied to WSIs that originate from routine diagnostics. 

2. Methods 

2.1. Challenge design 

The ACROBAT challenge took place between April and September 
2022. The objective of the challenge was the fully automatic registration 
of test set landmarks that were provided for the IHC WSIs to their H&E 
counterparts. For the training data, no landmarks were available, 
methods that were optimized with the training data therefore needed to 
be optimized in an unsupervised manner. The use of external training 
data was permitted. Both for the validation and test data, IHC landmarks 
were published. The data set is available under a CC-BY license from the 
Swedish National Data Service (SND). Registered validation set land-
marks could be submitted up to two times daily on the challenge website 
(acrobat.grand-challenge.org) to receive automated feedback on the 
algorithm performance. This submission system will remain open 
indefinitely. Test set performance was computed by the challenge or-
ganizers after the end of the challenge timeframe and no feedback on 
algorithm performance in the test set was available before the challenge 
workshop, which was held in conjunction with the MICCAI (Medical 
Image Computing and Computer Assisted Intervention) 2022 conference 
in Singapore. Details on the challenge timeline are available in Sup-
plementary Table 1. To prevent information leakage, members of the 
organizers’ institutions but not departments were allowed to participate 
in the challenge. During the challenge, there were 221 submissions by 
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16 teams for the validation data. Eight methods qualified to be evaluated 
in the test set by submitting test set landmarks and an algorithm 
description before the challenge deadline. These eight methods are 
assessed in this publication. 

2.2. Data set 

The ACROBAT data set consists of 4212 WSIs from 1153 female 
patients with primary breast cancer. Data was collected from the SöS 
study and patients originate from Sjödersjukthuset in Stockholm. All 
WSIs of a case contain tissue from the same tumor block, but sections are 
not necessarily consecutive. The cases were divided into a training set 
consisting of 750 cases (3406 WSIs), a validation set consisting of 100 
cases (200 WSIs) and a test set consisting of 303 cases (606 WSIs). The 
number of cases included in the challenge was decided based on data 
availability for the training data and annotation feasibility for the vali-
dation and test data. Clinical characteristics of the test set cases are 
available in Supplementary Table 2. For each case in the training set, one 
H&E WSI and up to four IHC WSIs from the routine diagnostic stains, 
which are the nuclear stains ER, PGR, and KI67 and the membrane stain 
HER2. In the validation and test set, there is one H&E WSI and one 
randomly selected IHC WSI out of the four IHC stains available. All WSIs 
were digitized on either one of two NanoZoomer XRs or a NanoZoomer 
S360 at ca. 0.23 µm/pixel. The ACROBAT data set was published as 
pyramidal TIFF WSIs with a resolution of 0.92 µm/pixel at the highest 
magnification. This reduces the data set size from 10.13 TB to 482 GB, 
which facilitates data transfer, likely without any impact on the chal-
lenge, as current WSI registration methods typically operate at much 
lower magnifications. Further details of the data generation and pro-
cessing workflows are available in the ACROBAT data set descriptors 
(Rantalainen and Hartman, 2023; Weitz et al., 2023b). Fig. 1 shows an 
example of an H&E WSI from the data set with corresponding IHC WSIs. 

2.3. Landmark annotations 

Registration performance in the ACROBAT challenge was quantified 
based on landmark annotations, which is generally the standard 
approach to evaluate registration performances. Annotations were 
generated by 13 members of the ABCAP research consortium (abcap. 
org), all of which have received histopathology education and who have 
previously worked with WSIs in research projects. Two of the annotators 
have pathologist training. Annotations were generated using a version of 

TissUUMaps (Solorzano et al., 2020) that was customized for the 
ACROBAT challenge. All annotations were generated using WSIs with 
40X magnification as the highest resolution. For the validation data, 
annotations for each image pair were generated by a single annotator, 
whereas in the test data, each image pair was annotated by two anno-
tators. Annotations were generated in two phases, the first of which was 
applied to both the validation and test data, whereas the second was 
only applied to the test data. Annotation protocols for both phases, 
including an example of what constitutes corresponding landmark lo-
cations, are available online (github.com/rantalainenGroup/ACRO 
BAT). 

During the first phase, annotators were asked to place 50 corre-
sponding landmarks in an H&E-IHC image pair that was displayed side- 
by-side in TissUUMaps, placing first the IHC and then the H&E land-
mark. For the second phase, landmarks in the IHC WSIs were fixed in 
place and displayed, whereas landmarks in the H&E WSIs were 
randomly moved by ± 500 pixels, which corresponds to ±115 µm at 
40X magnification. A second annotator was then selected randomly such 
that the first and second annotator were always different, with 87 
combinations between annotators present in the data. The second 
annotator was then tasked with moving the H&E landmark to the lo-
cations that they considered to match the displayed IHC landmark. This 
results in 10,040 landmarks in the validation and 44,760 landmarks in 
the test set. In total, 13 annotators annotated 54,800 points with an 
average of 49.24 landmarks per image. Finding corresponding landmark 
locations from the images was challenging for some image pairs due to 
the drastic difference in visual appearance and the number of annota-
tions for those was often less than the set target of 50 point pairs per 
image pair. Together, from the test and validation sets 83 % of the image 
pairs had exactly 50 landmarks, 6 % less than 50 landmarks, and 11 % 
above 50 landmarks. The majority of landmarks were placed in close 
proximity to each other by the first and second annotator, with 50 % of 
the landmarks less than 20 µm apart and 80 % less than 60 µm. 

We then proceeded to exclude landmarks in the test set for which the 
distance between the location selected by the first and second annotator 
exceeds 115 µm to filter out annotations with low inter-annotator 
agreement. The distribution of distances between annotators is depic-
ted in Fig. 2d). We furthermore excluded WSIs from evaluation for 
which fewer than 10 landmarks remained after this exclusion to ensure 
sufficient landmark density. This results in 13,130 landmarks and 297 
WSIs included for final performance evaluation. 

For 290 out of these 297 H&E WSIs in the test set, semantic 

Fig. 1. Example of an H&E stained tissue section and corresponding IHC stained tissue. The first row (a-e) shows an overview over the entire WSIs, whereas the 
second row (f-j) shows corresponding tissue regions at a higher magnification. a) and f) show the H&E WSI, b) and g) tissue stained with ER IHC, c) and h) with HER2 
IHC, d) and i) with KI67 IHC and e) and j) with PGR IHC. 
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annotations were generated by a trained pathologist who specializes in 
breast cancer. Annotations include the classes invasive cancer (IC), 
ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS), non- 
malignant changes (NMC), artifacts, lymphovascular invasion (LI) and 
normal tissue. We can therefore assign one of these classes to the ma-
jority of landmarks in the test set for analysis. Supplementary Table 3 
lists the percentages of landmarks in each class, as well as the area 
percentage of each class in the total tissue area. Normal tissue and ar-
tifacts were under-annotated, with factors of 0.79 and 0.53. This could 
be explained by a lack of structures in normal tissue. Artifacts may only 
exist in one of the two images of an image pair. The proportion of IC 
landmarks corresponds to the proportion of IC area in the data set, with 

a factor of 1.03. DCIS, LCIS, NMC and LI were over-annotated, with 
factors of 4.73, 7.77, 2.88 and 9 respectively. For 3.64 % of landmarks, 
the class assignment differs, which might e.g. be common for landmarks 
that were placed on edges of structures. 

2.4. Performance evaluation & ranking 

Performance evaluation was based on the target registration error 
(TRE). For each registered landmark, there are two target landmarks by 
two different annotators. The H&E WSIs are the target images for the 
registration, whereas the IHC WSIs are the source images. The trans-
formation that is found during the registration is therefore applied to the 

Fig. 2. Example of a target H&E WSI and distribution of DBAs. a) shows an overview of a H&E WSIs with annotated and registered landmarks. b) and c) depict a 
closer view of a specific landmark. d) shows a histogram of the DBAs, where the dashed line indicates the DBA exclusion threshold for performance metric 
computation. The histogram is capped at 250 µm. 
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IHC landmarks, to transform their coordinates to the H&E coordinate 
system. For each registered IHC landmark, we computed the distance in 
micrometers to each of these two H&E target points and used the mean 
distance as the error distance, which we will refer to as TRE. Within each 
WSI, we aggregated these error distances into a WSI-level score by 
taking the 90th percentile of the distances. We chose the 90th percentile 
to emphasize robustness. In the case of missing landmarks in the sub-
missions, we used the coordinates of the unregistered landmarks in the 
source image, capped at the image borders, to compute error distances. 
Submissions were then ranked on the median of the 90th percentiles. 
Submissions were ranked in two leaderboards, one including all eligible 
test set submissions, the other one only those submissions for which the 
code was made publicly available. Monetary prizes were then allocated 
to the first three teams in each leaderboard. All team members of all 
teams ranked in the test set leaderboard were invited to contribute to the 
publication. 

Beyond the median 90th percentile, we also computed the 90th 
percentiles of 90th percentiles, the mean 90th percentiles and the mean 
and median error distances across all landmarks without slide-level 
aggregation. Furthermore, we computed the mean reduction in the 
TRE in percent from unregistered landmark locations to the target 
locations. 

2.5. Linear mixed effects model analysis 

In order to investigate the impact of different properties of individual 
landmarks on the resulting error distances, we fitted Linear Mixed Ef-
fects (LME) Models with the R package lme4(Bates et al., 2015). One 
LME was fitted for each team and one for the annotators. A LME is a 
linear model of the form y = Xβ + Zu + ϵ. Here, y is a vector of the 
log10-transformed TREs for the teams and log10-transformed distances 
between annotators (DBAs) for the annotators for all landmarks in mi-
crometers. The log-transform was necessary to ensure that residuals 
were approximately Gaussian. For the DBA LME model, we chose 1 mm 
as the exclusion threshold. β represents the fixed effects coefficients and 
u the random effects coefficients, with X and Z as matrices that contain 
the values of observations of covariates in their rows. ϵ denotes a 
random error term. Fixed effects covariates are independent of each 
other, whereas random effects are sampled from the same statistical 
units. Here, we consider each WSI as a statistical unit containing mul-
tiple landmarks, with 272 units for which all required information is 
available for inclusion in the LME analysis. Furthermore, the combina-
tion of first and second annotator is considered as a statistical unit, with 
86 units in total. Both of these are therefore modeled as random effects 
in the LMEs. We included 16 fixed effects into the analysis. There are two 
continuous covariates, the distance of landmarks from the center of mass 
of the respective tissue mask in mm and the slide age. The slide age 
ranges from 0 to 5 years and indicates the time between sample prep-
aration and scanning. For slides with a high slide age, the staining may 
have faded to some degree. HER2, PGR, KI67 indicate the IHC antibody 
used in the IHC WSI of an image pair, with ER as the reference category. 
With respect to semantic segmentation classes that landmarks are 
positioned in, landmarks can be assigned IC, artifact, DCIS, LCIS and 
NMC, with normal tissue as the reference category. We excluded land-
marks with disagreeing tissue class between first and second annotator 
and LI landmarks, since there are too few of these to model. IC:NHG2 
and IC:NHG3 indicate the grading of the invasive cancer region for the 
landmarks within the cancer region for an image pair, with IC:NHG1 as 
the reference category. IC:BS:KI67, IC:BS:HER2, IC:BS:PGR and IC:BS: 
ER indicate the clinical biomarker status (BS) of the respective antibody 
for landmarks within the invasive cancer region of a WSI. The biomarker 
status is considered as positive for ER and PGR above a threshold of 10 % 
and 20 % for KI67. HER2 was considered as negative based on IHC 
scores 0 to 1+, positive for IHC scores 3+ and negative or positive for 2+
depending on additional in situ hybridisation that assesses gene ampli-
fication. Biomarker statuses were assigned according to clinical 

guidelines at the time of diagnosis. Coefficient values whose 95 % 
confidence interval does not include 0 will be considered as different 
from 0 and therefore as associated with the error distance. Descriptions, 
ranges and rerferences of LME covariates are available in Supplementary 
Table 4. As shown in Supplementary Figure 1, the slide age, scanner 
model and presence of control tissue in the IHC WSI of an image pair are 
highly correlated. We therefore only included the slide age into the LME 
analysis to avoid collinearity. A scatterplot of the LME model residuals, a 
quantile-quantile plot and a plot of the density of residuals are available 
in the section of the Supplement that describes the algorithm of the 
respective team. 

3. Results 

3.1. Deep learning has become an ubiquitously used tool for WSI 
registration that complements classical image analysis techniques 

A wide range of conceptually different WSI registration approaches 
were used in the challenge. Some methods relied on traditional image 
processing while others were based on deep learning. A common design 
pattern was to split the registration task into multiple steps, starting with 
image preprocessing, followed by an initial alignment and subsequently 
a deformable registration. The preprocessing step aims at normalizing or 
discarding information e.g. by color space transformation, contrast 
normalization and downscaling to focus registration on essential infor-
mation and simplify the problem for the subsequent steps. Teams VALIS, 
Fraunhofer MEVIS, and MeDAL target computations to meaningful areas 
through an initial tissue segmentation and then focus registration only 
on the detected tissue area. The initial alignment step roughly aligns 
images using translation, rotation, reflection, scaling or affine trans-
formations in order to simplify the task for the remaining deformable 
step. The deformable step involves elastic or curvature-controlled 
transformations that attempt to completely align image contents and 
can account for complex deformations of the tissue. Registration steps 
were typically performed iteratively starting at low resolutions with 
increasing resolutions during subsequent steps. A common division of 
registration algorithms is into intensity-based and feature-based 
methods. Intensity-based methods rely on finding correspondences be-
tween image intensities based on a similarity function, whereas feature- 
based methods extract features, such as points, and extract a descriptor 
from their local neighborhood to establish matching feature pairs be-
tween images. 

Six out of the eight analyzed teams used feature-based registration, 
with some relying on more recent approaches such as SuperPoint 
(DeTone et al., 2017) and SuperGlue (Sarlin et al., 2020) while others 
used more classical approaches like SIFT , BRISK (Leutenegger et al., 
2011) and RANSAC (Fischler and Bolles, 1981). For the intensity-based 
parts of participants’ algorithms, the most common similarity criterion 
was cross-correlation (CC) and its variants normalized cross-correlation 
(NCC) and convolution. Only team Fraunhofer MEVIS employed 
normalized gradient fields (NGF) (Haber and Modersitzki, 2007), which 
bases its matching on intensity gradient orientations. No participant 
proposed a solution utilizing mutual information. Seven out of the eight 
top performing teams applied deep learning techniques in parts of their 
workflows. This shows deep learning has further permeated multi-stain 
WSI registration since the ANHIR challenge in 2019, where only one 
method applied deep learning. Table 1 summarizes all the aforemen-
tioned aspects and underlines which parts of the groups’ workflows 
involve deep learning, either during preprocessing or registration. For 
instance, Gestalt Diagnostics and AGHSSO used the graph neural 
network-based SuperGlue (Sarlin et al., 2020) for feature matching, and 
SK used the convolutional neural network-based registration framework 
Voxelmorph (Balakrishnan et al., 2019). 

The use of external data was allowed in this challenge. The three 
teams Fraunhofer MEVIS, Gestalt Diagnostics and AGHSSO used 
external data for their algorithm development. Fraunhofer MEVIS 
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trained a tissue segmentation model with external data, Gestalt Di-
agnostics used external data to optimize their final parametrization and 
AGHSSO further validated their model with data not provided by the 
organizers. More detailed summaries and additional information for 
each of the methods is available in the Supplementary Materials. 

3.2. Diverse registration methodologies result in several performance 
clusters, one method approaches human annotator accuracy 

The primary ranking metric for the challenge was the median 90th 
percentile of the target registration error (TRE) within each WSI pair. To 
reduce the effect of human error, TREs were computed by averaging the 
distance in µm of registered landmarks to two target landmarks placed 
by two different annotators. An example of a target H&E WSI, with 
annotator and registered landmarks is depicted in Fig. 2a-c. As a quality 
control step, we excluded landmarks with poor agreement between 
annotators from performance metric computations based on distance 
between annotators (DBA) >115 µm, as indicated in the histogram of 
DBAs in Fig. 2d. In total, 13,130 pairs of landmarks in 297 image pairs 
were included for metric computation. The distributions of the 90th 
percentiles in the validation and test data are depicted in Fig. 3a. Fig. 3b 
depicts scatterplots of 90th percentiles against the 90th percentiles of 
DBAs. Based on the primary ranking metric, the algorithm developed by 
Gestalt Diagnostics achieved the best score, with a median 90th 
percentile of 60.1 [55.8, 68.6] µm. This is approximately half the median 
90th percentile of the methods that follow in the ranking, starting with 
VALIS with 123.3 [98.5, 144.1] µm, AGHSSO with 137.6 [120.3, 176.7] 
µm and Fraunhofer MEVIS with 155.3 [123.1, 184.7] µm. The solutions 
of NEMESIS and MeDAL are in the range of three to four times the lowest 
median 90th percentile, with 200.5 [176.7, 257.1] µm and 262.5 [225.4, 
322.5] µm respectively. The median 90th percentile of SK of 1230.0 
[1141.0, 1341.5] µm is one order of magnitude higher and the solution 
of MFRGNK one order of magnitude higher compared to SK with 
15,938.0 [15,117.0, 16,598.6] µm. A comparison of the distributions of 
the 90th percentiles in Fig. 3a with two-sided Mann-Whitney U rank 
tests indicates that for Gestalt Diagnostics, 90th percentiles of TRE differ 
between the validation and test set, with Benjamini-Hochberg (BH) 
adjusted p-value < 0.01, with lower TREs in the test set. For the other 
methods, this comparison reveals no differences. Both Fig. 3a and 3b 
indicate that for all methods except Gestalt Diagnostic, there are outlier 
image pairs with considerably higher 90th percentiles of TRE. E.g. for 
VALIS, there is a higher number of outlier image pairs with poor regis-
tration quality compared to AGHSSO, which the median 90th percentile 
is robust against, but not the mean. Correspondingly, Fig. 3c shows the 
ranking for each metric that is available in Table 2. The rankings are 
mostly stable across metrics. Only the algorithm proposed by VALIS is 
ranked lower compared to AGHSSO regarding the mean 90th percentile 
and the median error distance across all landmarks, as well as the mean 
distance reduction and AGHSSO and Fraunhofer MEVIS regarding the 
mean error distance across all landmarks. Supplementary Figure 2 
shows the stability of the ranking with the median 90th percentile for 
varying exclusion thresholds in µm for the DBA. Only for exclusion 
thresholds below 70 µm, the ranking between AGHSSO and Fraunhofer 
MEVIS begins to depend on the threshold. Paired two-sided Wilcoxon 
signed rank tests indicate that the distributions of 90th percentiles are 
different between all submissions (compare Supplementary Figure 3) 
with BH-adjusted p-values < 0.01 for each comparison. Supplementary 
Figure 4a shows the Spearman correlations of median 90th percentiles in 
the test set, which reveals a cluster of correlations for the six top- 
performing methods with correlations ranging from 0.61 to 0.93. 

All median 90th percentiles, along with the 90th percentiles of 90th 
percentiles, mean 90th percentiles and the median and mean across all 
landmarks without WSI-wise aggregation are listed in Table 2. It also 
contains the slide-wise aggregated mean reduction in distance between 
source and target landmarks in percent, which may guide intuition on 
algorithm performances. Ta

bl
e 

1 
| 

Su
m

m
ar

y 
of

 m
et

ho
ds

. A
 s

um
m

ar
y 

of
 e

ac
h 

te
am

’s
 m

et
ho

d 
w

ith
 d

es
cr

ip
tio

ns
 o

f t
he

ir
 m

ai
n 

w
or

kfl
ow

. M
or

e 
de

ta
ile

d 
de

sc
ri

pt
io

ns
 a

re
 a

va
ila

bl
e 

in
 th

e 
Su

pp
le

m
en

ta
ry

 M
at

er
ia

ls
. U

nd
er

lin
ed

 e
le

m
en

ts
 a

re
 w

he
re

 d
ee

p 
le

ar
ni

ng
 is

 u
se

d.
  

Te
am

 
Co

de
 

av
ai

la
bl

e 
U

se
s 

D
L 

In
iti

al
 a

lig
nm

en
t 

In
iti

al
 a

lig
nm

en
t 

cr
ite

ri
on

 
D

ef
or

m
ab

le
 tr

an
sf

or
m

at
io

n 
D

ef
or

m
ab

le
 

cr
ite

ri
on

 
O

pt
im

iz
at

io
n 

Pr
ep

ro
ce

ss
in

g 

G
es

ta
lt 

D
ia

gn
os

tic
s 

 
✓

 
Ro

ta
tio

n 
se

ar
ch

 w
ith

 
Su

pe
rg

lu
e/

O
pe

nG
lu

e/
Lo

FT
R 

&
 

RA
N

SA
C 

N
o.

 o
f k

ey
po

in
t 

m
at

ch
es

 
Lo

ca
l a

ffi
ne

 fo
r 

tr
ia

ng
ul

ar
 p

ar
tit

io
ns

 
RA

N
SA

C 
in

lie
rs

 
– 

Co
nt

ra
st

-n
or

m
al

is
in

g,
 r

an
do

m
 e

qu
al

iz
e,

 r
an

do
m

 
sh

ar
pn

es
s,

 n
on

-m
ax

im
um

 s
up

pr
es

si
on

 

VA
LI

S 
✓

 
✓

 
BR

IS
K 

ke
yp

oi
nt

s 
VG

G
 

de
sc

ri
pt

or
s 

&
 R

A
N

SA
C 

RA
N

SA
C 

in
lie

rs
, 

Tu
ke

y 
in

lie
rs

 
D

ee
pF

lo
w

(W
ei

nz
ae

pf
el

 e
t a

l.,
 2

01
3)

 
D

ee
pF

lo
w

’s
 

D
ee

pM
at

ch
 

– 
D

ow
ns

am
pl

e,
 fo

re
gr

ou
nd

 s
eg

m
en

ta
tio

n,
 g

ra
ys

ca
le

, 
in

ve
rt

 in
te

ns
iti

es
, i

nt
en

si
ty

 n
or

m
al

is
at

io
n 

w
ith

 A
ki

m
a 

in
te

rp
ol

at
io

n.
 

A
G

H
SS

O
 

✓
 

✓
 

SI
FT

/S
up

er
Po

in
t &

 R
A

N
SA

C/
 

Su
pe

rG
lu

e 
Sp

ar
se

 d
es

cr
ip

to
r 

er
ro

r 
M

ul
ti-

le
ve

l a
nd

 w
ei

gh
te

d 
lo

ca
l N

CC
 

op
tim

iz
at

io
n 

N
CC

 
A

da
m

 
D

ow
ns

am
pl

e,
 g

ra
ys

ca
le

, i
nv

er
t i

nt
en

si
tie

s 
an

d 
eq

ua
liz

e 
w

ith
 C

LA
H

E 
Fr

au
nh

of
er

 
M

EV
IS

  
✓

 
A

lig
n 

ce
nt

er
s o

f m
as

s r
ot

at
io

na
l 

se
ar

ch
 w

ith
 N

G
F 

N
G

F 
O

pt
im

is
e 

co
nt

ro
l p

oi
nt

 g
ri

d 
w

ith
 li

ne
ar

 
in

te
rp

ol
at

io
n 

N
G

F 
L-

BF
G

S 
D

ow
ns

am
pl

e,
 g

ra
ys

ca
le

, f
or

eg
ro

un
d 

se
gm

en
ta

tio
n 

N
EM

ES
IS

 
✓

 
✓

 
SI

FT
 &

 R
A

N
SA

C 
tis

su
e 

m
as

k 
ov

er
la

p 
RA

N
SA

C 
in

lie
rs

 +
D

ic
e 

sc
or

e 
Im

pl
ic

it 
ne

ur
al

 r
ep

re
se

nt
at

io
n 

of
 

tr
an

sf
or

m
 w

ith
 M

LP
(W

ol
te

ri
nk

 e
t a

l.,
 

06
–0

8 
Ju

l 2
02

2)
 

N
CC

 
A

da
m

 
D

ow
ns

am
pl

e,
 g

ra
ys

ca
le

, h
is

to
gr

am
 e

qu
al

is
at

io
n,

 
ga

us
si

an
 s

m
oo

th
in

g 

M
eD

A
L 

✓
  

Te
m

pl
at

e 
m

at
ch

in
g 

(m
as

k 
co

nv
ol

ut
io

n,
 1

◦
in

te
rv

al
s)

 
Co

nv
ol

ut
io

n 
m

ax
im

um
 

RB
F 

in
 lo

ca
l k

ey
po

in
ts

 fo
un

d 
fr

om
 ti

ss
ue

 
m

as
ks

 
co

nv
ol

ut
io

n 
– 

D
ow

ns
am

pl
e,

 fo
re

gr
ou

nd
 s

eg
m

en
ta

tio
n,

 g
ra

ys
ca

le
 

SK
  

✓
 

Te
m

pl
at

e 
m

at
ch

in
g 

(N
CC

, 
0◦

an
d 

18
0◦

ro
ta

tio
ns

) 
N

CC
 

Vo
xe

lm
or

ph
(B

al
ak

ri
sh

na
n 

et
 a

l.,
 2

01
9)

 
M

SE
 

A
da

m
 

D
ow

ns
am

pl
e,

 g
ra

ys
ca

le
, W

SI
 b

or
de

r 
re

m
ov

al
 

M
FR

G
N

K 
✓

  
O

RB
 &

 R
A

N
SA

C 
w

ith
 

pr
oj

ec
tiv

e 
tr

an
sf

or
m

 
RA

N
SA

C 
in

lie
rs

 
– 

– 
– 

D
ow

ns
am

pl
e,

 M
ac

en
ko

 c
ol

ou
r 

no
rm

al
iz

at
io

n(
 

M
ac

en
ko

 e
t a

l.,
 2

00
9)

  

P. Weitz et al.                                                                                                                                                                                                                                   



Medical Image Analysis 97 (2024) 103257

7

To contextualize algorithm performances, we also computed all 
metrics for the DBA. The median 90th percentile of DBAs is 67.0 [62.2, 
72.4] µm and therefore slightly higher compared to the value of Gestalt 
Diagnostics of 60.1 [55.8, 68.6] µm. It is possible to achieve a lower TRE 
than DBA by registering a landmark to a location between the two 
landmark positions chosen by the two annotators, as shown in Supple-
mentary Figure 5. The mean 90th percentile of DBAs of 63.5 [60.3, 66.6] 
µm however is lower than the lowest corresponding TRE by Gestalt 
Diagnostics of 160.0 [134.0, 189.4], which is also the case for the mean 
across all landmarks of 31.1 [30.6, 31.6] µm, compared to 63.3 [60.1, 

66.6] µm for the best-performing algorithm. 
We also investigated failure cases to identify how algorithms can be 

improved further. The image pair with the worst mean 90th percentile 
across methods is depicted in Supplementary Figure 6. The high degree 
of cropping does not allow for the detection of a tissue outline and 
therefore a reliable initial alignment for some methods. While this im-
pacts algorithms significantly, with 90th percentiles of 440.90 µm for 
Gestalt Diagnostics, closely followed by MeDAL with 442.61 µm and 
NEMESIS with 586.73 µm, it is not challenging for human annotators to 
find corresponding landmarks, with a 90th percentile of distances 

Fig. 3. Overview of 90th percentiles of TRE and rankings. a) shows violin plots of the distributions of 90th percentiles of TREs in the validation and test data for all 
eight investigated methods, while b) shows scatterplots of the WSI-wise 90th percentiles of DBAs compared to the corresponding 90th percentiles of TREs, excluding 
landmarks with a DBA > 1 mm when computing 90th percentiles for annotators. c) shows the ranking of methods for each of the metrics that are listed in Table 2. 
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between first and second annotator of 98.47 µm. 

3.3. Linear mixed effects model analysis reveals covariates that 
consistently impact TREs across algorithms 

In order to identify which properties of the landmarks and image 
pairs impact algorithm performances, we conducted a linear mixed ef-
fects (LME) model analysis for each team, with the log10-transformed 
landmark-wise TREs or DBAs as the endogenous variable. The analysis 
is adjusted for the slide ID and combination of first and second annotator 
as random effects. Percentage changes for one unit increase of the fixed 
effects for the LMEs for the TREs of the six best performing teams and the 
DBA are depicted in Fig. 4a. Supplementary Figure 7 shows the corre-
sponding fixed effects coefficients, whose values are available in Sup-
plementary Table 5. Due to the log-transform, percentage changes of the 
respective reference TRE accumulate multiplicatively across effects. For 
covariates for which the 95 % confidence intervals of most or all fixed 
effects include zero, it is nevertheless possible to observe and interpret 
trends. 

As depicted in Fig. 4a, the antibody of the stain of the IHC WSIs in the 
image pairs compared to ER as the reference category appears to not 
impact algorithm performances across methods, potentially with the 
exception of HER2, where the point estimates of the effect sizes are 
consistently below zero. For each landmark, a semantic segmentation of 
the surrounding tissue is available, including invasive cancer (IC), non- 
malignant changes (NMC), artifacts, ductal carcinoma in situ (DCIS), 
lobular carcinoma in situ (LCIS) and normal tissue as the reference class. 
With the exception of artifacts, landmarks in all segmentation classes are 
associated with a lower TRE compared to normal tissue. This effect is 
particularly pronounced for NMC, DCIS and IC. For landmarks within 
the IC regions, we also included the Nottingham histological grade 
(NHG) as an interaction. Both for NHG 2 and 3, which have less clearly 
defined growth patterns than NHG 1, the registration error increases 
across methods. Besides the NHG, we also modeled an interaction be-
tween the IC region, the biomarker status (BS) as assigned at time of 
diagnosis and the IHC stain. It appears that there is a trend towards 
higher TREs for landmarks within HER2-positive IC regions and poten-
tially a weaker trend towards higher TREs in PGR-positive IC regions. 
KI67 and ER BS within IC regions are not associated with TRE. 

Besides categorical fixed effects, we also analyzed two continuous 
effects, the slide age and the distance of a landmark to the center of 
tissue mass. The increase in error in percent with increasing units is 
depicted in Supplementary Figure 8. The slide age is strongly associated 

with the TRE. With the exception of Gestalt Diagnostics, all teams have 
an increase of TRE compared to the respective reference of approxi-
mately 100 % at four years. For NEMESIS and MeDAL, TRE is also 
relevantly associated with the distance to the center of tissue mass with 
an increase of 60 % at 10 mm, at which there is an increase of ca. 20 % 
for VALIS, AGHSSO and Fraunhofer MEVIS. In contrast, there is a weak 
negative association for Gestalt Diagnostics and the annotators. 

Fig. 4b shows the distributions of changes in percent for the esti-
mated conditional means for the random effects. The interquartile range 
for the annotator combination is highest for the DBA, followed by 
Gestalt Diagnostics and decreasing with decreasing ranking, whereas the 
interquartile range for the slide ID is lowest for the annotators, followed 
by Gestalt Diagnostics and roughly increasing with decreased ranking. 
The correlations between conditional means for the slide ID are shown 
in Supplementary Figure 4b and closely resemble the correlations of the 
90th percentiles, with a cluster for the six highest ranked methods but 
weaker correlations with the annotators. 

Across fixed effects, the direction of statistically significant co-
efficients is the same throughout teams, with the exception of the dis-
tance to center for Gestalt Diagnostics. The DBA is associated with fewer 
fixed effects than the registration methods, and effect sizes are generally 
smaller. 

4. Discussion 

We organized the ACROBAT challenge to compare the performance 
of current multi-stain WSI registration algorithms and to test the 
applicability of current solutions for a real-world data set with slides 
from clinical routine. We published the largest-to-date data set for his-
tology image registration, placed over 54,000 landmark points with 13 
annotators for performance quantification and conducted an in-depth 
analysis of registration methods including clinical information and tis-
sue segmentations. 

Out of 16 teams that submitted registered landmarks for the vali-
dation data on the challenge website, 8 qualified to be ranked in the test 
data based on submitted registered test set landmarks and an algorithm 
description. We attribute this to the requirement for publishing an al-
gorithm description, which might not have been considered worthwhile 
by some teams that did not accomplish a high rank in the validation 
data. Furthermore, publicizing details of the respective registration 
method might not have been desirable for some teams for IP reasons. We 
see the automated evaluation of registration performance in the vali-
dation data as a service to the WSI registration research community that 

Table 2 
Metric values for the primary challenge metric, the median 90th percentile of error distances across WSIs, alongside further metrics that could be used to rank al-
gorithm performances. Median and mean were computed on the landmark-level, without previous aggregation on the WSI-level. The mean distance reduction indicates 
the mean reduction in distance between source and target landmark position due to the registration. Confidence intervals were obtained by bootstrapping with 10,000 
bootstrap samples.  

Team Median 90th percentile 
[µm] 

90th percentile of 90th 
percentiles [µm] 

Mean 90th percentile 
[µm] 

Median [µm] Mean [µm] Mean distance 
reduction [%] 

Gestalt 
Diagnostics 

60.1 [55.8, 68.55] 449.64 [345.97, 535.96] 159.99 [132.78, 
188.43] 

22.29 [21.8, 22.72] 63.29 [60.05, 66.59] 98.97 [98.73, 99.18] 

Annotators 66.99 [62.19, 72.37] 97.72 [95.26, 101.44] 63.47 [60.34, 66.66] 21.27 [20.79, 21.8] 31.09 [30.61, 31.56] n.a. 
VALIS 123.32 [98.49, 144.12] 694.45 [580.41, 857.44] 578.93 [274.38, 966.9] 37.98 [37.01, 38.99] 313.36 [275.43, 

353.76] 
97.41 [96.21, 98.33] 

AGHSSO 137.63 [120.9, 175.65] 713.4 [604.16, 838.94] 303.16 [256.04, 
358.43] 

34.64 [33.75, 35.46] 122.21 [117.03, 
127.63] 

98.2 [97.86, 98.5] 

Fraunhofer 
MEVIS 

155.29 [123.1, 184.65] 1019.5 [856.2, 1343.29] 604.35 [393.19, 
870.49] 

40.88 [39.93, 41.93] 294.14 [269.65, 
319.55] 

96.56 [95.37, 97.59] 

NEMESIS 200.47 [176.69, 257.13] 1308.64 [1013.13, 1834.37] 733.04 [510.86, 
1010.42] 

62.72 [60.96, 64.26] 349.89 [325.62, 
375.91] 

95.79 [94.37, 97.0] 

MeDAL 262.49 [225.44, 322.47] 1607.82 [1177.53, 2558.87] 1221.55 [838.07, 
1673.09] 

81.9 [79.63, 83.92] 721.24 [674.45, 
768.83] 

93.24 [91.18, 95.13] 

SK 1230.01 [1141.98, 
1341.52] 

3292.55 [2539.85, 4722.35] 2438.45 [1956.03, 
2981.57] 

628.44 [612.02, 
644.17] 

1524.35 [1466.42, 
1582.3] 

84.3 [81.63, 86.83] 

MFRGNK 15,938.02 [15,117.95, 
16,576.21] 

22,946.95 [21,964.99, 
23,844.39] 

15,342.27 [14,576.8, 
16,107.18] 

9224.71 [9064.66, 
9400.27] 

9988.07 [9876.3, 
10,101.04] 

29.23 [26.38, 32.07]  
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is independent from the challenge. Some teams might have submitted 
validation set landmarks without the intention to participate in the 
competition in the test data. We therefore do not consider this drop-out 
rate as a short-coming of the challenge design. 

A wide range of conceptually different approaches were evaluated in 
the challenge, showing that since the ANHIR challenge, deep learning 
has become an impactful tool also in the WSI registration domain. The 
best performing method was by Gestalt Diagnostics in terms of accuracy 
and robustness. In this method, a tree structure of triangular partitions is 
constructed using DL-based feature matching. Most top performing 
methods relied upon feature-based registration, which shows its effec-
tiveness with challenging data sets. Also the use of external data may 
have played a role in the outcome as its utilization increased at the better 
ranks. The obtained results suggest that feature-based approaches are 
able to achieve higher robustness than alternative methods, especially 
those using modern DL-based methods such as SuperPoint and Super-
Glue. Feature-based methods may be less impacted by certain imper-
fections in the data such as tears. They have the advantage of being 

independent of foreground tissue segmentation and therefore make no 
assumptions of the presence of background. Intensity-based registration 
with cross-correlation is able to produce good results with grayscale 
converted H&E and IHC images when compared to more advanced 
multi-modal similarity metrics such as the NGF. One possible explana-
tion for the high performance of the method by Gestalt Diagnostics is its 
fully feature-based approach. Adjacent histological sections have 
structures that are shared between them but also smaller structures that 
are not shared such as some of the cells, which can appear only on one of 
the sections. Feature-based registration may be able to focus on those 
shared structures between the images through the feature matching 
step. Another possible explanation is the lack of regularization in the 
applied transformation. Other teams among the four best performing 
methods regularized the transformation to produce smooth de-
formations, which however comes at the cost of accuracy. While regis-
tration without regularization can produce smaller errors in a setting 
with landmark based evaluation, there can be practical reasons to trade 
off accuracy for smoother transformations, e.g. if downstream analyses 

Fig. 4. Coefficients and conditional means of random effects of the LME analysis for the TREs of the six highest ranked teams and the DBA for annotators. a) shows 
the percentage changes in TRE or DBA for one unit increase of fixed effects coefficients with 95 % confidence intervals. Transparency of the respective marker is 
increased if the confidence interval includes zero. For categorical fixed effects, there are indications of the percentage of landmarks that are part of the respective 
category. For continuous effects, the unit is indicated. Effects starting with Seg indicate landmark tissue classes, with normal tissue as the reference class. b) shows 
boxplots that represent the distributions of the percentage changes of estimated conditional means of the random effects for the annotator combination and slide IDs. 
Boxes include the lower to upper quartile of data. Whiskers extend 1.5 times the interquartile range from the box outlines or the minimum or maximum value. 
Outliers outside of this range are not shown but are available in Supplementary Figure 7. 

P. Weitz et al.                                                                                                                                                                                                                                   



Medical Image Analysis 97 (2024) 103257

10

of the registered images require less distorted tissue. 
While a wide variety of image pre-processing and registration 

methods has been deployed in this challenge, it does not cover all 
methods that have been used in WSI registration during the last years. 
For example, no team used mutual information as a similarity metric in 
an intensity-based registration approach. Furthermore, while a wide 
variety of methods for image pre-processing, similarity quantification 
and optimization has been used in this challenge, there are many com-
binations between the methods used by individual teams that have not 
been explored. This might partially be explained by the relatively low 
number of teams that participated in the challenge. Furthermore, some 
methods that were common during the last years may simply have 
proven inferior and were therefore not deployed. Nevertheless, we 
conclude that the challenge covers a sufficiently large variety of 
methods to provide a useful performance comparison and to guide 
method selection and development. 

Given the challenging nature of the data set with slides originating 
from routine clinical workflows, top-performing methods should be 
considered to have a high performance, both with regards to accuracy, 
as well as to robustness. Breast cancer cell diameters extend approxi-
mately up to 20 µm. The lowest mean TREs across all landmarks of 63.29 
µm and 122.21 µm therefore cannot be assumed to allow a cell-level 
registration, but neighborhoods of cells can be assumed to be regis-
tered correctly. Furthermore, depending on the section spacing, actual 
cell-level correspondence between the sections is impossible to deter-
mine. Therefore, the performance level achieved by the best-performing 
methods may already have reached the limit set by the technical setup 
using non-consecutive sections. The high section spacing in some image 
pairs requires registration methods to be robust against image regions 
that cannot be aligned well. It appears like the top-performing methods 
have achieved this robustness. However, there is no guarantee that the 
ranking of algorithms would be the same for a data set consisting of only 
consecutive or re-stained sections. While there are differences in per-
formance based on the computed metrics, the mean distance reductions 
in percentage provide an intuition that all top-performing methods are 
well suited to significantly reduce the initial TRE. The ranking of 
methods is mostly stable both across metrics and annotator disagree-
ment exclusion thresholds for landmarks. Statistical testing indicates 
that the ranking based on the 90th percentiles is unlikely to arise by 
chance. Nevertheless, methods with a lower ranking could be shown to 
be capable of similar performances through better algorithm optimiza-
tion in future work. The rankings in this study however provide a clear 
indication of which methods are currently preferable. A direct com-
parison of the registration performances to the ANHIR challenge proves 
difficult, since TREs were normalized with image diagonals in the 
ANHIR challenge, rather than provided in µm. 

Correlations among 90th percentiles of TREs are notably higher 
among algorithms than between algorithms and corresponding 90th 
percentiles of DBAs, with the exception of Gestalt Diagnostic. This 
finding is also supported by the almost identical correlations of the 
conditional means of the random effect that captures the slide ID. This 
indicates that image pairs that were difficult to annotate were not 
necessarily the same as those that were difficult to register for the pro-
posed methods, while generally the same image pairs were difficult to 
register for the six top-performing methods. The image pair with the 
worst registration performance based on the 90th percentiles empha-
sizes the importance of the initial alignment step, which fails in this case 
due to the precropping of the IHC WSI. This indicates that it would be 
worthwhile to focus future work in WSI registration on increased 
robustness against comparable failure cases. 

In order to investigate which properties of the WSIs and tissue impact 
algorithm performances, we conducted LME analysis. The conditional 
means of the random effects of slide ID and annotator combination 
indicate that these effects have a higher impact on the TREs than the 
fixed effects. An analysis of the fixed effects shows that the antibody of 
the IHC stain within the image pair does not have a significant impact on 

the TREs, potentially with the exception of a trend towards lower TREs 
for HER2 WSIs compared to ER WSIs. This might be because the ap-
pearances of the routine diagnostic stains in breast cancer are relatively 
similar. Landmarks in HER2 BS positive IC regions are associated with 
higher TREs in IC regions, but BS seems to otherwise not impact TREs. It 
was not possible to investigate the BS in DCIS and LCIS regions, since BS 
is not routinely reported there, yet cells within these regions can be 
largely positively stained. Future research should investigate how 
visually more different stains impact TRE. Nevertheless, this means that 
the risk for biases due to IHC and BS in multi-stain studies that involve 
registration might not be high. Regions of DCIS, LCIS, and NMC both 
were over-annotated by annotators and appear to be associated with 
lower TREs compared to normal tissue. The reason for this might be the 
presence of more visually easily distinguishable structures, which could 
also explain the lower TRE in IC regions. Nevertheless, we find the 
reduced TRE in IC regions surprising, since IC is characterized through 
diffuse growth patterns. Potentially, increased nuclear density in IC re-
gions leads to higher contrast reference points, which could be beneficial 
at lower resolutions. IC is likely to be located in the center of resections, 
but the negative association with the TRE remained when adjusting for 
the distance to the center of tissue mass. Higher NHGs are associated 
with increases of TRE and DBA in IC regions, which is likely due to 
increasingly poor differentiation of structures and cells. This indicates 
that there is some risk of bias from cancer grades in studies that deploy 
registration. The distance of landmarks to the center of tissue mass is 
positively associated with TREs for most methods, indicating room for 
improvements in deformable registration. The covariate with the high-
est impact on the TRE across algorithms is the slide age, which can more 
than double the baseline registration error for the oldest slides for some 
methods. In registration-based studies that focus on outcomes, the slide 
age could therefore confound analyses in multiple ways. However, this is 
only a concern for studies that focus on WSIs from archived tissue sec-
tions. During deployment, WSIs would be generated from recently 
sectioned tissue. 

While it was not possible to investigate the section spacing in this 
study due to lack of recorded information, the LME analysis adjusts for 
this through the random effect that captures the slide IDs, alongside 
other slide-specific properties. The conclusions of the LME analysis 
regarding the fixed effects are therefore likely transferable between 
section spacings, nevertheless, future research that elucidates the effect 
of section spacing would be of high interest. Interestingly, the inter-
quartile range of the conditional means of the random effect that cap-
tures the annotator combination are highest for Gestalt Diagnostics. This 
observation is in concordance with the lowest slope in the reduction of 
the median 90th percentile of TRE in Supplementary Figure 2a and the 
significant improvement between validation and test set performance 
for Gestalt Diagnostics, considering that it was possible to exclude low 
quality landmarks in the test data. This indicates that the performance 
estimation for Gestalt Diagnostics could be significantly limited through 
uncertainty in the annotations. While this also impacts the other teams, 
the relative impact on their performance metrics might not be as rele-
vant and only the ranking between Fraunhofer MEVIS and AGHSSO 
could change depending on the DBA exclusion threshold. While the 
precision of landmarks might be a limiting factor for the quantification 
of algorithm performances, the LME analysis indicates that the DBA is 
only weakly associated with the covariates, which means that the TRE 
quantification is likely not biased within covariate categories. 

Besides the precision of landmark placing, this study has several 
further limitations. It is important to consider that landmarks only allow 
the quantification of registration performances in sparsely sampled lo-
cations. While we hope that the performance in these points is a reliable 
proxy for the registration performance in all image regions, this is not 
guaranteed. Furthermore, there is no guarantee that the target land-
marks identified by both annotators, even if in close proximity, actually 
correspond to the source landmark. This focus on landmarks might favor 
feature-based registration methods that rely on aligning key-points in 
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the image pairs. There is currently no consensus on how to best evaluate 
registration performance outside of landmark locations. Annotators 
over-annotated the classes DCIS, LCIS, NMC and LI and under-annotated 
normal tissue and artifacts. While this biases the evaluation of perfor-
mance metrics towards the performance within the over-annotated 
classes, the correct registration of these tissue classes compared to 
normal tissue is likely of higher interest for future applications. We 
therefore think that this does not adversely impact the generalizability 
of quantitative results. Our evaluation is purely quantitative, no quali-
tative analysis was performed. Therefore, there is no guarantee that 
transformed images are feasible for possible downstream analyses 
following registration. The LME analysis is limited by the assumptions of 
additive relationships between covariates and a linear relationship be-
tween the covariates and the log10-transformed TRE. Furthermore, the 
high correlation between the WSI scanner, slide age and presence of 
control tissue does not allow to conclusively disentangle these effects. 
Another limitation of this challenge is the evaluation of registration al-
gorithms as a whole. It could yield valuable insights to analyze different 
combinations of suggested pre-processing, initial alignment and 
deformable registration methods. Furthermore, we did not assess 
computational performances, since registration took place on the par-
ticipants computing infrastructures. All tissue materials in this challenge 
originate from breast resections. Stains include three nuclear stains and 
one membrane stain. It is therefore not guaranteed that results are 
transferable to WSIs of tissue from other organs or other stains. How-
ever, since registration is typically performed at low resolutions where 
different tissues might not be distinguishable, we think that it is likely 
that the results would generalize to other tissues. With regards to the 
transferability of results between stains, the same considerations apply, 
although the generalizability might be lower since different stains can 
have a larger impact on tissue appearance at the macroscopic level. 

Despite its limitations, we think that the ACROBAT 2022 challenge 
has elucidated the state of multi-stain WSI registration algorithms and 
their application to real-world data that originates from routine clinical 
workflows. While WSI registration is not yet a solved problem, the re-
sults in this study indicate that it has now become a sufficiently reliable 
technology to enable novel areas of research. Clinical applications are 
likely also possible with the observed registration performances, but 
would require further validation to ensure patient safety. Furthermore, 
this study has led to novel insights into specific strengths and weak-
nesses of current WSI registration methods and the mixed effects models 
analysis could be a model for future analyses of registration methods 
also outside of computational pathology. Five of the discussed methods 
are available under open-source licenses, and we believe that this study 
has generated sufficient evidence of algorithm performance and 
robustness to warrant the proliferation of top-performing methods into a 
wide range of future applications. The ACROBAT 2023 challenge will 
build on the results of the ACROBAT 2022 challenge and investigate 
computational performances and algorithm performance under domain 
shifts. 
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Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 
using lme4. J. Stat. Softw., Articles 67, 1–48. 

Baxi, V., Edwards, R., Montalto, M., Saha, S., 2022. Digital pathology and artificial 
intelligence in translational medicine and clinical practice. Mod. Pathol. 35, 23–32. 

Bera, K., Schalper, K.A., Rimm, D.L., Velcheti, V., Madabhushi, A., 2019. Artificial 
intelligence in digital pathology - new tools for diagnosis and precision oncology. 
Nat. Rev. Clin. Oncol. 16, 703–715. 

Borovec, J., Kybic, J., Arganda-Carreras, I., Sorokin, D.V., Bueno, G., Khvostikov, A.V., 
Bakas, S., Chang, E.I.-C., Heldmann, S., Kartasalo, K., Latonen, L., Lotz, J., Noga, M., 
Pati, S., Punithakumar, K., Ruusuvuori, P., Skalski, A., Tahmasebi, N., Valkonen, M., 
Venet, L., Wang, Y., Weiss, N., Wodzinski, M., Xiang, Y., Xu, Y., Yan, Y., 
Yushkevich, P., Zhao, S., Munoz-Barrutia, A., 2020. ANHIR: automatic non-rigid 
histological image registration challenge. IEEe Trans. Med. ImAging 39, 3042–3052. 

Bulten, W., Kartasalo, K., Chen, P.-H.C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., 
Steiner, D.F., van Boven, H., Vink, R., Hulsbergen-van de Kaa, C., van der Laak, J., 
Amin, M.B., Evans, A.J., van der Kwast, T., Allan, R., Humphrey, P.A., Grönberg, H., 
Samaratunga, H., Delahunt, B., Tsuzuki, T., Häkkinen, T., Egevad, L., Demkin, M., 
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Wang, Y., Kartasalo, K., Weitz, P., Ács, B., Valkonen, M., Larsson, C., Ruusuvuori, P., 
Hartman, J., Rantalainen, M., 2021. Predicting molecular phenotypes from 
histopathology images: a transcriptome-wide expression-morphology analysis in 
breast cancer. Cancer Res. 81, 5115–5126. 

Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C., 2013. DeepFlow: large 
displacement optical flow with deep matching. In: 2013 IEEE International 
Conference on Computer Vision. Presented at the 2013 IEEE International 
Conference on Computer Vision (ICCV). IEEE, pp. 1385–1392. 

P. Weitz et al.                                                                                                                                                                                                                                   

http://www.imi.europe.eu
http://www.imi.europe.eu
https://doi.org/10.1016/j.media.2024.103257
https://doi.org/10.1109/TMI.2019.2897538
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0002
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0002
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0003
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0003
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0004
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0004
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0004
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0005
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0006
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0007
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0007
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0007
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0007
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0008
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0008
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0008
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0008
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0009
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0009
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0009
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0009
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0010
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0010
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0010
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0010
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0012
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0012
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0012
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0012
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0013
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0013
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0013
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0014
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0014
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0014
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0014
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0014
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0015
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0015
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0015
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0015
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0016
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0016
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0017
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0017
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0017
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0017
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0017
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0018
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0018
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0018
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0019
http://doi.org/10.1016/j.patter.2023.100725
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0021
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0021
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0021
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0021
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0022
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0022
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0022
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0024
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0024
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0024
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0024
https://doi.org/10.48723/w728-p041
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0026
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0026
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0027
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0028
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0028
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0028
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0028
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0029
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0029
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0029
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0030
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0030
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0031
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0032
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0032
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0032
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0033
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0033
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0033
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0034
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0034
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0034
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0034
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0035
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0035
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0035
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0036
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0036
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0036
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0036
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0037
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0037
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0037
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0037


Medical Image Analysis 97 (2024) 103257

13

Weitz, P., Sartor, V., Acs, B., Robertson, S., Budelmann, D., Hartman, J., Rantalainen, M., 
2023a. Increasing the usefulness of already existing annotations through WSI 
registration. arXiv [cs.CV]. 

Weitz, P., Valkonen, M., Solorzano, L., Carr, C., Kartasalo, K., Boissin, C., Koivukoski, S., 
Kuusela, A., Rasic, D., Feng, Y., Pouplier, S.K.S., Sharma, A., Eriksson, K.L., Latonen, 
L., Laenkholm, A.-V., Hartman, J., Ruusuvuori, P., Rantalainen, M., 2022a. 
ACROBAT – a multi-stain breast cancer histological whole-slide-image data set from 
routine diagnostics for computational pathology. arXiv [eess.IV]. 

Weitz, P., Valkonen, M., Solorzano, L., Carr, C., Kartasalo, K., Boissin, C., Koivukoski, S., 
Kuusela, A., Rasic, D., Feng, Y., Sinius Pouplier, S., Sharma, A., Ledesma Eriksson, K., 
Latonen, L., Laenkholm, A.-V., Hartman, J., Ruusuvuori, P., Rantalainen, M., 2023b. 
A multi-stain breast cancer histological whole-slide-image data set from routine 
diagnostics. Sci. Data 10, 562. 

Weitz, P., Wang, Y., Kartasalo, K., Egevad, L., Lindberg, J., Grönberg, H., Eklund, M., 
Rantalainen, M., 2022b. Transcriptome-wide prediction of prostate cancer gene 
expression from histopathology images using co-expression-based convolutional 
neural networks. Bioinformatics. 38, 3462–3469. 

Wieslander, H., Gupta, A., Bergman, E., Hallström, E., Harrison, P.J., 2021. Learning to 
see colours: biologically relevant virtual staining for adipocyte cell images. PLoS 
ONE 16, e0258546. 

06–08 Jul Wolterink, J.M., Zwienenberg, J.C., Brune, C., 2022. Implicit neural 
representations for deformable image registration. In: Konukoglu, E., Menze, B., 
Venkataraman, A., Baumgartner, C., Dou, Q., Albarqouni, S. (Eds.), Proceedings of 
The 5th International Conference on Medical Imaging with Deep Learning, 
Proceedings of Machine Learning Research. Presented at the Medical Imaging with 
Deep Learning, PMLR, pp. 1349–1359. 

P. Weitz et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0040
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0040
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0040
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0040
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0040
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0041
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0041
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0041
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0041
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0042
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0042
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0042
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043
http://refhub.elsevier.com/S1361-8415(24)00182-8/sbref0043

	The ACROBAT 2022 challenge: Automatic registration of breast cancer tissue
	1 Introduction
	2 Methods
	2.1 Challenge design
	2.2 Data set
	2.3 Landmark annotations
	2.4 Performance evaluation & ranking
	2.5 Linear mixed effects model analysis

	3 Results
	3.1 Deep learning has become an ubiquitously used tool for WSI registration that complements classical image analysis techn ...
	3.2 Diverse registration methodologies result in several performance clusters, one method approaches human annotator accuracy
	3.3 Linear mixed effects model analysis reveals covariates that consistently impact TREs across algorithms

	4 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Code Availability
	Inclusion & Ethics
	Acknowledgements
	Supplementary materials
	References


