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Abstract. Artificial intelligence has been used with great success for the segmen-
tation of anatomical structures in medical imaging. We use these achievements
to improve classical registration schemes. Particularly, we derive geometrical fea-
tures such as centroids and principal axes of segments and use those in a combined
approach. A smart filtering of the features results in a two phase preregistration,
followed in a third phase by an intensity guided registration. We also propose
to use a regularization, which enables a coupling of all components of the 3D
transformation in a unified framework. Finally, we show how easily our approach
can be applied even to challenging 3D medical data.

1 Introduction

Image registration is one of the main tasks in daily clinical routine and is required
when for example images of different times have to be compared [1].Inspired by the
seminal paper of Wasserthal et. al. [2] we propose a new segmentation based registration
procedure. The key idea is that based on a powerful segmentation tool, we generate a set
of corresponding features, that is used to initialize the overall registration. Based on the
automatically deduced features, we suggest a multi-phase approach similar to [3, 4]. In
both approaches [3, 4], it is assumed that corresponding landmarks pairs are available. In
a first phase, a starting value is obtained from plain landmark based preregistration. Based
on this starting point, an overall energy including an image based similarity measure
is minimized in a second phase. In [3] a 2D vector field (VF) regularization [5] and a
simple penalty for the landmark match is used. In [4] landmarks are included as a hard
constraint and a thin-plate spline (TPS) model for arbitrary dimensions is used for phase
one and a curvature regularizer for phase two. In this work, we assume a segmentation,
e.g., using the TotalSegmentator (TS) [2] and apply a three-phase procedure. In phase
one, we generate landmarks by computing the centroids of segments and include these as
a hard constraint in the preregistration. In phase two, we assume the images to be roughly
aligned and derive correspondences of additional moment based features, specifically
principal axes. Based on this additional information, we continue similarly to phase
one. Finally, in phase three, we include an image based similarity term and replace the
landmark constraint by an application specific penalty. In all phases, we use the same
3D VF regularizer [6]. To the best of our knowledge this VF regularization has not been
used in 3D image registration before. Numerical results on challenging 3D thorax data
are presented. Our results highlight the power of this combined approach as well as the
advantages and limitations of geometrical features.
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2 Material and methods

In this section we first formulate the general registration problem. Thereafter details of
the landmark extraction from the segments as well as of the registration phases will be
given. Next the procedure is adapted to a specific application, precisely the registration of
3D thorax data. Lastly, we present the experimental data set and the evaluation measures.

2.1 Variational formulation of the registration problem

We briefly recall the general formulation of a registration problem; for details see [1, 7].
Solving a registration problem means minimization of an overall energy 𝐽

𝐽 (𝑦) = 𝐷 (𝑇 [𝑦], 𝑅) + 𝑆(𝑦) + 𝑃(𝑦) subject to 𝐶 (𝑦) = 0 (1)

where 𝑦 : R𝑑 → R𝑑 is the wanted transformation, 𝑑 is the spatial dimension, template
𝑇 and reference 𝑅 are functions with compact support in an interval Ω ⊂ R𝑑 and 𝑇 [𝑦]
is the transformed image with 𝑇 [𝑦] (𝑥) = 𝑇 (𝑦(𝑥)) for all 𝑥. Moreover 𝐷 is a potential
similarity measure, 𝑆 is a regularizer, 𝑃 is a potential penalty, and 𝐶 is a potential
constraint. More details are discussed in the following sections.

Although regularization is in principle arbitrary, we suggest the family

𝑆(𝑦; 𝛾,𝑊) :=
∫
𝑊

𝛾‖∇ div 𝑦‖2 + (1 − 𝛾)‖∇ rot 𝑦‖2 𝑑𝑥 (2)

where either 𝑊 = R𝑑 or 𝑊 = Ω and 𝛾 ∈ (0, 1) balances divergence and curl of the
field 𝑦. These regularizers perform on complete VF and not only on its components
individually [5, 6]. A 2D version and the choice of an optimal parameter 𝛾 is discussed
in [3]. For our 3D results we use the special case 𝛾 = 0.5, which coincides with the TPS
energy as in [4]. However, we use this energy for all phases of the registration. Note,
that our approach covers essentially all similarity measures, regularizers and penalty
terms and is not limited to a particular setting. For our specific application, we discuss
a similarity measure 𝐷 and a penalty 𝑃 in Section 2.4.

2.2 Segmentation-based feature extraction

We now discuss the feature generation. Basically, we derive geometrical landmarks from
the segments, which we represent as characteristic functions. We assume pairs (𝜏𝑗 , 𝜌 𝑗 ),
𝑗 = 1, . . . , 𝐿 for the segments of the template and reference image. Our procedure is
identical for all pairs (𝜏𝑗 , 𝜌 𝑗 ) and therefore we describe it only for one particular pair
and omit the index 𝑗 . Based on moments, we compute centroids 𝑐 and principal axes
𝑣𝑘 [1]. Note that the main axes transformation theorem gives 𝑀𝑉 = 𝑉Σ, where 𝑀 is
essentially the second order moment matrix,Σ = diag(𝜎2

𝑘 , 𝑘 = 1, . . . , 𝑑) with 𝜎𝑗 ≥ 𝜎𝑗+1
an ordered diagonal matrix of eigenvalues and𝑉 = (𝑣𝑘 , 𝑘 = 1, . . . , 𝑑) the corresponding
normalized eigendirection matrix with det𝑉 = 1. Besides to the centroids 𝑐, we derive
potentially 2𝑑 additional landmarks per segment: 𝑐 ± 𝜎𝑘𝑣

𝑘 , 𝑘 = 1, . . . , 𝑑. However,
the computation of the axes is only robust, if the segment has clear orientation, i.e.
𝜎𝑗 � 𝜎𝑗+1 for all 𝑗 . We therefore use the landmarks 𝑐 ± 𝜎𝑘𝑣

𝑘 only in the latter case
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(Fig. 1). For finding correspondences of the additional landmarks based on the principal
axes, we assume that after the initial phase (centroids alignment), the main axes of 𝜏
and 𝜌 are close to each other. Here we sketch the situation for 𝑑 = 2; the 3D case is
along the same lines. Without loss of generality we choose 𝑟𝐴 as the first landmark for
the principal axes of 𝜌. Our ordering of the additional landmark is 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 , 𝑟𝐷 and is
motivated by a right handed coordinate system. From the angles ∠𝑟𝐴𝑐𝑡𝑎 and ∠𝑟𝐴𝑐𝑡𝑏, we
conclude that 𝑡𝑎 and not 𝑡𝑏 corresponds to 𝑟𝐴. With this ordering the list of landmarks
for 𝜏 is thus 𝑡𝑎, 𝑡𝑏, 𝑡𝑐, 𝑡𝑑 (Fig. 1). We extend the centroid feature list by adding these
points.

2.3 Registration Scheme

Following classical landmark registration [1], in the first phase we compute 𝑦C as
the minimizer of Equation. (1) with 𝐷 = 0, 𝑃 = 0, 𝑆(𝑦) = 𝑆(𝑦; 𝛾,R𝑑) and
𝐶 (𝑦) = ∑𝐿

𝑗=1 ‖𝑦(𝑟 𝑗 ) − 𝑡 𝑗 ‖. Next we compute 𝑦LM as minimizer of the same functional,
where now the extended feature list derived from the pre-aligned images is used. Note
that 𝑦C is calculated as an intermediate step to find corresponding landmarks as de-
scribed in Sec. 2.2, but is discarded as soon as 𝑦LM is calculated in the second phase.
The intensity based registration performed in the third phase is the minimization of
Eq. (1) with 𝑆(𝑦) = 𝛼 · 𝑆(𝑦 − 𝑦LM; 𝛾,Ω) and 𝐶 = 0. 𝐷 and 𝑃 are chosen application
specific (Sec. 2.4). Note that the similarity measure is no longer zero and thus we need
to introduce a balancing parameter 𝛼. Moreover, we only regularize the difference to the
preregistration, as this difference can be interpreted as an update of 𝑦LM. We restrict the
regularization to Ω with Dirichlet boundary condition.

2.4 Application specific parametrization

While the general approach is clearly outlined, it remains to discuss the application
depending parametrization and feature extraction. In this paper we focus on the 3D
thorax data described in Section 2.5. The output of the TS contains various segments
that are not usable in our registration procedure. We exclude all segments that are not
fully contained in both images. For the first phase, we bypass the problem of large
deformations through breathing motion inside the chest and abdomen by restricting the

Fig. 1. Visualization of extraction and assignment of additional features. From left to right (main
axis: strong, second axis: light): Segment 𝜁 with 𝜎1 ≈ 𝜎2 (additional features are discarded);
segment 𝜏 with 𝜎1 � 𝜎2 and its principal axes; principal axes of 𝜏, 𝜌 after aligning the centroids.
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set of centroids to those of rigid structures such as bones. Some segments are visualized
in Fig. 2. For the principal axes in the second phase, we only use segments of rigid
structures with clear orientation, i.e. log2 (𝜎𝑗/𝜎𝑗+1) > tol, where tol = 1/3 is suggested.
As similarity measure in the third phase we focus on the classical sum of squared
differences restricted to a set 𝑊 ⊂ Ω

𝑆𝑆𝐷 (𝑦;𝑇, 𝑅,𝑊) := 1/2 · ‖𝑇 [𝑦] − 𝑅‖2
𝐿2 (𝑊 ) (3)

In particular, we define interior regions of the thorax Σ𝑇 , Σ𝑅 ⊂ Ω using the convex
hull of centroids of bone structures (even if they may not be fully contained in both
images). Let 𝜒Σ𝑇 , 𝜒Σ𝑅 denote the characteristic functions on these. We assume that after
preregistration, the exterior and interior regions roughly align, i.e 𝜒Σ𝑇 [𝑦LM] ≈ 𝜒Σ𝑅 , but
due to the lung motion not necessarily 𝑇 [𝑦LM] ≈ 𝑅 in the interior region. Therefore,
we suggest the similarity measure 𝐷 (𝑇 [𝑦], 𝑅) := 𝑆𝑆𝐷 (𝑦;𝑇, 𝑅, Σ𝑅 ∩ 𝑦(Σ𝑇 )), to get a
better alignment in the interior region. At the same time we want to keep the alignment
of the exterior regions and thus use the penalty 𝑃(𝑦) := 𝛽 · 𝑆𝑆𝐷 (𝑦; 𝜒Σ𝑇 , 𝜒Σ𝑅 ,Ω) with
𝛽 ∈ R≥0.

2.5 Data set

We show results for the publicly available data set [8], which consists of 3D HRCT
thorax images with an inspiration and an expiration scan for each subject. We arbitrarily
pick case 021 from the test data set and perform the registration between expiration
(reference) and inspiration (template). The size of the data is 192 × 192 × 208 voxel
each. The TS is used for segmentation followed by the filtering outlined in Sec. 2.4. We
obtain eleven bone segments, of which only five provide valid information about the
principal axes (Fig. 2). The data set comes with two major challenges, namely large lung
motion and a cropped expiration scan.

2.6 Evaluation Measures and Computational Details

The proposed method is evaluated using dice scores for corresponding segments (𝜏𝑗 , 𝜌 𝑗 )
and the energy of the difference image restricted to the thorax region in the reference

Fig. 2. Visualization of the inspriration scan [8] and bone segments from the TS. From left to
right: Coronal slice overlayed with segments; details; 3D view of selected segments (blue and
green indicate that only centroids or both, centroids and principal axes are used, respectively); a
detailed segment with its centroid and principal axes.
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Tab. 1. Mean dices of segments and distances (SSD) in the exterior (Γ \ Σ𝑅) and interior (Σ𝑅) of
the thorax region (Γ) before and after registration.

mean dice of segments in dist [·106] in
Γ \ Σ𝑅 Σ𝑅 Γ \ Σ𝑅 Σ𝑅 Γ

without registration 0.24 0.51 1.2 5.6 6.9
after preregistration 0.64 0.32 2.0 4.4 6.6
after full registration 0.58 0.61 0.5 4.3 4.9

image Γ ⊂ Ω or some subset of Γ

dice 𝑗 (𝑦) := 2|𝜏𝑗 [𝑦] ∩ 𝜌 𝑗 |/( |𝜏𝑗 [𝑦] | + |𝜌 𝑗 |) dist(𝑦) := 𝑆𝑆𝐷 (𝑦, 𝑇, 𝑅, Γ) (4)

In the implementation we use a multilevel approach similar to [4]. The data is interpolated
on a 64x64x64 grid, therefore the coarsest level is 𝑙min = 3 and the finest level is 𝑙max = 6.
We set the parameters 𝛼 = 500, 𝛽 = 103. For the optimization we use a Gauss-Newton
scheme and conjugate gradient as solver. All calculations are performed on MATLAB
R2022b. Furthermore the FAIR package as described in [7] is used.

3 Results

Next we present numerical results for the 3D thorax data described in Sec. 2.5. Using
the parameters from Sec. 2.6 the registration procedure yields transformations 𝑦LM and
𝑦 after preregistration and full registration, respectively. Table 1 summarizes the mean
dices of the segments in the interior region Σ𝑅 ⊂ Γ and the exterior region Γ \ Σ𝑅 of
the thorax region Γ. Additionally the distances in these parts are shown for the different
phases of the registration. For the mean dice, we observe that after preregistration it
improves considerably on the exterior, whereas it deteriorates in the interior. The latter
is due to lung motion and the distribution of landmarks. Therefore, the third phase of our
approach focusses on the interior region by adapting the similarity measure and adding
a region specific penalty, tolerating a small degradation on the exterior region (Tab. 1).
For the distances, we observe an increase on the exterior after preregistration. This is
to be expected as this step does not include intensity information. However, the overall
approach improves particularly the distance on the thorax region Γ (Tab. 1 and Fig. 3).

4 Discussion

We propose a new segmentation inspired registration procedure. From the automatically
derived segments, we extract geometrical features such as centroids and principal axes.
These features serve as input for a two-phase landmark based preregistration. Using
sensible filtering, the preregistration comprises a rough alignment based on segments of
bones in phase one and an extension to principal axes type features in phase two. With
this approach, we overcome the difficulty of 3D landmark extraction and in addition
provide an outstanding starting value for an intensity based third registration phase.
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(a) 𝑅 (b) 𝑇 (𝑦LM) (c) 𝑇 (𝑦) (d) 𝑅 − 𝑇 (e) 𝑅−𝑇 (𝑦LM) (f) 𝑅 − 𝑇 (𝑦)

Fig. 3. Exemplary selected coronal slices of the 3D thorax images: expiration scan (𝑅); transformed
inspiration scan landmark based 𝑇 (𝑦LM) and final result 𝑇 (𝑦); and corresponding difference
images.

Similarly to [3], we use a vector field regularization energy for all phases. This
energy is based on divergence and curl and enables a coupling of all components of the
vector field. Note that [3] considers only 2D registration in which the curl is simply a
scalar, while we extend to 3D, where the curl becomes a vector field.

A proof of concept is given for challenging 3D thorax data, which show a variety of
difficulties including large lung motion and cropped images. We demonstrate that the
scheme can easily be adapted to cover also this application, produces impressive results,
and reveals the advantages of a hybrid, landmark and intensity based, registration.

In future work, we perform a more comprehensive evaluation on data from different
applications. Moreover, we also compare the approach to state-of-the-art alternatives.
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