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Maria-Goeppert-Str. 3, Lübeck, 23562, Germany.
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Abstract
The stationary velocity field (SVF) approach allows to build parametrizations of
invertible deformation fields, which is often a desirable property in image registra-
tion. Its expressiveness is particularly attractive when used as a block following
a machine learning-inspired network. However, it can struggle with large defor-
mations. We extend the SVF approach to matrix groups, in particular SE(3).
This moves Euclidean transformations into the low-frequency part, towards which
network architectures are often naturally biased, so that larger motions can be
recovered more easily. This requires an extension of the flow equation, for which
we provide sufficient conditions for existence. We further prove a decomposition
condition that allows us to apply a scaling-and-squaring approach for efficient
numerical integration of the flow equation. We numerically validate the approach
on inter-patient registration of 3D MRI images of the human brain.
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1 Introduction
Image registration describes the task of aligning two or more images by providing a
reasonable transformation. This task has a wide range of applications, including atlas-
based segmentation [1], tracking of changes in medical data such as tumor growth and
fracture healing [2], Synchronous Localization and Mapping [3], and image stitching
for panoramic or (satellite/drone) captures [4].

Typically, the sought transformation increases the image similarity while fulfilling
additional criteria for a physically plausible deformation, such as its smoothness or
invertibility. The computation of a useful alignment is often described by an opti-
mization problem, in which an objective function is minimized over a specific space
of parametrized deformations.

Given two scalar-valued images represented by functions I1, I2 : Ω→ R on the image
domain Ω ⊆ Rd, a typical approach for finding a suitable deformation ϕ : Ω→ Rd that
maps corresponding points in I1 to points in I2 is to formulate a variational problem
of the form

min
ϕ∈D
L(ϕ; I1, I2), L(ϕ; I1, I2) := J(I1, I2 ◦ ϕ) + R(ϕ). (1)

The set of deformations D is often chosen to consist of all functions ϕ : x 7→ x + u(x),
where the displacement u : Ω → Rd is an element of a suitable topological vector
space. The functional J is a similarity term, in which smaller values indicate a higher
similarity between its arguments, such as an L2 distance; the regularizer R : D → R
shall provide a bias towards physically reasonable deformations and can be used to
stabilize the problem.

Choosing suitable similarity terms and regularizers has been intensively investi-
gated [5, 6] and is not the goal of this work. Instead, we focus on another important
aspect: the choice and parametrization of the deformation space D. In practice, expres-
siveness and convergence can depend heavily on the parametrization used. Moreover,
this choice can influence the meaning and practicability of the regularizer.

To motivate our work, consider the example in Fig. 1, in which we performed a 3D
registration of two MRI brain scans from the OASIS [7] dataset using the popular
Stationary Velocity Field (SVF) approach [8–10] and our proposed method (denoted
SE(3)). In the first example, the sought deformation is comparably small before the
registration process, and both approaches perform equally well. In the second example,
the deformation includes a larger rotational component. When looking at the deformed
images only, the SVF approach appears to generate an alignment that is clearly worse,
but not catastrophically so. This is deceptive: inspecting the generated deformation
fields (Fig. 2), it becomes clear that the SVF approach generates a deformation that
– while it maps corresponding intensity values reasonably well between the images –
is far from the ground truth.

The findings on these (synthetic) examples are compatible with our perception of
the existing literature: In general, we found that SVF-based approaches mostly seem
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Fig. 1: Comparison of the stationary velocity field (SVF) approach and our proposed
matrix group-valued approach using the SE(3) group on synthetically deformed human
brain MRI data. While both methods manage to align the 3D volumes under small
deformations (top row), the SVF approach struggles when the input images are not
pre-aligned (bottom row). The resulting deformation field shows clear alignment issues
(center), which are alleviated by the proposed matrix group-valued approach (right).

(a) ground truth deformation (b) SVF (c) SE(3) (ours)

Fig. 2: 2D slices of the 3D deformation fields from the bottom row of Fig. 1. The
arrow colors indicate the displacement in the direction orthogonal to the slice. While
SVF roughly aligns the images judging in terms of visual quality in Fig. 1, inspecting
the deformation field (b) shows that it is far from the ground truth (a). The proposed
parametrization with matrix groups (c) yields a result that closely matches the ground
truth.
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to be applied to pre-aligned images, and/or that the judgement of their accuracy is
solely based on the similarity of the images after registration or on related proxies,
such as the overlap of known segmented regions, that do not necessarily imply sensible
deformation fields.

Nevertheless, the SVF approach was used successfully in the past and has many attrac-
tive properties, such as the possibility of generating diffeomorphic deformations and
of easily obtaining the inverse deformation, for example for bidirectional approaches.
Therefore, in this work, we aim to derive an extension that preserves these benefits
while allowing for a better handling of large deformations.

General approach. In general, in order to solve (1) numerically, a parametrization
of the deformation is required, which we denote abstractly by ϕθ, where θ ∈ Rn is a
set of real parameters to be determined for each given image pair I1 and I2.

The registration problem (1) then becomes

min
θ∈Rn

L(ϕθ; I1, I2). (2)

Classically, ϕθ is either – in the finite-differences setting – represented by its val-
ues on a grid, taken directly from the parameter vector θ, or – in a finite elements
approach – is assumed to be a linear combination of basis functions, where θ deter-
mines the coefficients in the linear combination. Typical choices include spline-based
parametrizations [11] and the use of radial basis functions [12].

While comparably straightforward to apply, such linear parametrizations have disad-
vantages: Firstly, it is hard to enforce global regularity of the deformation, in particular
invertibility, which is often desirable or even mandated by the physical requirement
that the deformation should not contain any “folds”, i.e., self-intersections. Secondly,
due to the local nature of the classical basis functions, components in θ typically
affect only small parts of the deformation, which makes the optimization process more
complicated: In order to correctly identify global deformations, a large share of the
parameters needs to be adjusted. Furthermore, random local similarities often create
local minima or stationary points in the energy, which can trap iterative solvers.

The approach taken in this work builds on the approach used in [10]:

1. Rather than explicitly parametrizing the deformation, we assume it to be the
solution of a flow equation. The behavior of the flow equation is governed by its
right-hand side in the form of a velocity field function ν. Under certain condi-
tions, this setup guarantees that the deformation is sufficiently regular and that
an inverse exists which can be computed efficiently.

2. For the parametrization of the velocity field ν, we build on the recent success of
coordinate-based networks and assume that the velocity field is described by a
network/neural architecture, which is parametrized – in a nonlinear way – by θ.
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Fig. 3: Process of generating a deformation field ϕθ from the parameter vector θ. The
network-based generator G transforms the parameter vector into a velocity field νθ.
The solution operator S solves an associated flow equation, resulting in a final defor-
mation ϕθ. Classically, the velocity field and the flow equation are formulated in
Euclidean space; we extend the approach to the matrix group setting.

From now on, by S we denote the (non-linear) solution operator that maps such a
velocity field to a deformation ϕ = S(ν). The neural network can, in the most generic
way, be thought of as a mapping G that takes a parameter vector θ and generates a
velocity field νθ = G(θ).

Overall, this results in the model

min
θ∈Rn

L(S(G(θ)); I1, I2), (3)

where the generator G turns the parameter vector θ into a velocity field, which is then
mapped to a deformation by the solution operator S that solves a flow equation. Fig. 3
visualizes the complete process of generating the deformation ϕθ from the parameter
vector θ.

Flow equation. In this work, we particularly focus on the flow equation that is used.
In the classical setting also used in [10], one introduces an artificial time t ∈ [0, 1]
and prescribes a – possibly time-varying – velocity field v, for which at each time
point t, the associated velocity field vt is an element of a suitable function space V .
The deformation is then induced through the ordinary differential equation

∂ϕ(x, t)
∂t

= vt(ϕ(x, t)) for t ∈ [0, 1], (4)

ϕ(x, 0) = x,

yielding a final deformation ϕ(·, 1) at time t = 1.
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In the LDDMM approach, this allows to construct a metric on the infinite-dimensional
manifold of diffeomorphisms based on properties of v, which has also found use as
a regularizer [13]. Finding that minimizing curves are geodesics with respect to a
particular Riemannian metric, a shooting formulation with an initial momentum was
subsequently developed [14]. Promising a lower computational complexity without
significantly hurting expressivity in practical applications, stationary velocity fields
also found use [9]. These flow-based approaches have been successful in medical image
registration, as they enforce diffeomorphic deformations if the velocity field fulfills an
integrability condition, which can be ensured by a given differentiability operator [13,
15].

Matrix-valued velocity fields. A disadvantage of (4) is that the velocity fields that
represent common affine deformations such as rotations are non-trivial and require
the network to generate such vector fields from scratch.

Therefore, we propose to extend the stationary flow equation (4) by lifting it to matrix
fields: Firstly, the deformation is parametrized as ϕ(x) := M(x)x̄ where x̄ is the
extension (x, 1)⊤ of x to homogeneous coordinates, and the matrix field M : Ω → G
maps to a subgroup G ⊂ GL(R, d + 1) of matrices in R(d+1)×(d+1). This allows to
parametrize common linear transformations, such as rotations, using constant matrix
fields, which can potentially be learned more easily.

Secondly, in order to formulate the flow equation for these matrix fields, we replace
the classical velocity field v by a stationary velocity field ν : Ω→ g with values in g,
the finite-dimensional vector space of right-invariant vector fields on G, that is, the
Lie algebra of G.

The generalized flow equation then takes the form

∂M

∂t
(x, t) = ν(M(x, t)x̄)M(x,t) (5)

M(·, 0) = id. (6)

For the specific choice G = T (R, 3), the group of translations in R3, the formulation (5)
reduces to the classical flow equation (4) in the stationary case.

In a similar spirit, the authors of [16] proposed a parametrization of the deforma-
tion using a manifold/SE(3)-valued field, which improved the learning of rotational
deformations. This technique shifts the output field into a lower-frequency domain.
However, their description is not flow-based and does not inherently guarantee
diffeomorphisms.

Contribution. To the best of our knowledge, the differentiable structure of matrix
groups has not yet been exploited for diffeomorphic, deformable (non-rigid) image
registration tasks using neural architectures. This article is structured as follows.

• We propose to extend the existing framework that relies on implicit neural fields
and the flow equation by lifting the flow equation to the setting of matrix fields in
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Approach Neural fields Flow equation Matrix groups
Balakrishnan et al. 19 ✓

Han et al. 23 ✓ ✓
Park et al. 21 ✓ ✓

ours ✓ ✓ ✓

Fig. 4: Components used to parametrize deformations in recent approaches. In this
work, we introduce a neural fields based combination of matrix groups with a flow
equation.

Section 3. We prove the existence of a solution of the generalized flow equation in
Thm. 1 (proof in Section 6.1).

• To obtain a network of manageable depth, in Section 3.2 we extend and employ
the numerical scaling-and-squaring approach for integrating the flow equation to
the matrix group-valued setting. Specifically, we prove that the lifted flow equation
satisfies a decomposition proposition that is crucial for the scaling-and-squaring
approach (Thm. 2, proof in Section 6.2).

• Finally, in Section 4 we confirm numerically that our approach generates invertible
deformations, and we validate the accuracy of the generated dense displacement
field on synthetic and real-world 3-D registration problems.

Related Work.

Supervised learning frameworks for deformable image registration include [17–19]
which are based on artificial deformations and label-driven approaches (also called
semi-supervised) [20]. Ensuring that the artificial training data generalizes well to a
specific task is a difficult problem known in the literature as reality gap [21].

Unsupervised learning-based methods for image registration are typically tuned to
minimize a loss based on an image similarity term with possible additional regularisa-
tion. A successful approach is to start from established image registration approaches
that are based on finding a certain optimal set of parameters and replace the opti-
mization process with a trained network: In [22], the network is trained to output a
stationary velocity field as the basis for generating the deformation in a setting solely
based on image similarity and regularisation, as well as in a combined approach using
additional segmentation data. In [23], a network is trained to generate initial moments
for the shooting formulation of LDDMM based on precalculated moments using a clas-
sical approach. In [24], the networks directly predict parameters for B-spline-based
registration. In [25], Laplacian Pyramid Networks are used which directly produce a
deformation field.

A conceptional somewhat different approach uses trained neural architectures as
an image similarity metric called “deep similarity metrics,” to which classical opti-
mization methods are applied [17]. Combining neural architectures with LDDMM
approaches, the authors of [26] proposed a ResNet architecture to model the
time-variant flow equation, while [27] introduces an adversarial LDDMM learning
method.
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Matrix
group

T(R, 3) SE(R, 3) SIM(R, 3) Aff(R, 3) PGL(R, 3)

Dimension: 3 6 7 12 15
Transform: Translation Rigid Rigid, scal-

ing
Affine Perspective

Preserves: Orientation & Area & Angles & Parallels,
ratio of dis-
tances &

Collinearity,
cross-ratio

Known
closed form
of exp; log:

yes yes yes no no

Table 1: Common matrix groups acting on R3.

Architecturally more akin to classical variational approaches is the concept of neural
coordinate representations [28], in which the unknown function is parametrized non-
linearly using a network. There, the estimation of the network parameters is input-
specific and generally requires an optimization procedure as in classical variational
approaches. Such approaches work particularly well for novel view synthesis, for which
the approach is termed Neural Radiance Fields [29]; see also [16] for an adaptation
to deformable scenes. In the context of solving partial differential equations, these
networks are known as physics-informed neural networks (PINNs) and have been
applied to tasks such as reconstructing flows from 2D observations [30] and PDE-
constrained optimization [31]. Other examples include data compression of images
and videos [28, 32].

In the context of deformable image registration, neural representations were studied
in [10, 33] in a diffeomorphic setting with stationary velocity fields and, among others,
in [6] for implicit regularisation.

Our proposed approach is based on a specific representation of transformations in
the form of matrix groups. Transformations of the Euclidean space that preserve spe-
cific structures have already been studied and categorized for a long time. Since the
19th century, continuous transformation groups were considered with a differentiable
structure, also known as infinitesimal transformations. This effort culminated in a
full-fledged theory of Lie groups and their corresponding Lie algebras [34]. Since then,
the theory found use in applications including quantum theory [35], computer graph-
ics [36, 37], odometry [38], and robotics [39, 40]. In the context of machine learning,
matrix groups were often employed to ensure specific invariances – for example, in
classification tasks [41] – or equivariances [42]. The authors of [43] introduced tangent
space backpropagation for automatic differentiation on Lie groups including SO(3),
SE(3), and SIM(3). Combining image registration with transformation groups, the
authors of [16] proposed parametrizing a deformation pointwise by members of SE(3)
to better represent rotational deformations.
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2 Mathematical preliminaries
A real Lie group is a group (G, ·) that is also a smooth real manifold such that the
following conditions hold [44]:

• The mapping · : G×G→ G : (g, h) 7→ g · h is continuous.
• The mapping ()−1 : G→ G : g 7→ g−1 is continuous.

Table 1 lists the Lie groups that are most relevant to this work, such as the special
Euclidean group of rigid transformation of points in R3, SE(3), which can be thought
of as a subset of real 4 × 4 matrices when using the usual homogeneous coordinate
representation for the points in R3. Such groups that are representable by (invertible)
matrices are also known as matrix groups.

All groups in Table 1 can thus be embedded in the 16-dimensional vector space R4×4.
In fact, Whitney’s embedding theorem [45] guarantees that, under weak theoretical
conditions, each d-dimensional smooth real manifold can be embedded into a 2d-
dimensional Euclidean space.

Therefore, the tangent space at a point p ∈M can be visualized as an affine subspace
in R4×4 that touches and linearly approximates the manifold at p; a tangent vector is
then a vector attached to p that lies in this affine subspace.

More rigorously, the tangent space TpG at a point p ∈ G is defined here as a set of
equivalence classes of smooth curves on the manifold γ : I ⊂ R → G, γ(0) = p with
the equivalence relation

γ1 ∼ γ2 ⇔ (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0) (7)

for every chart ϕ : Up → Rk defined on a neighborhood Up of p. If the manifold
can be embedded into a vector space Rl, the charts can be replaced by embeddings
i : Up → Rl [46].

The disjoint union of all tangent spaces TG =
⊔

p∈G TpG is called a tangent bundle.
A vector field X : G → TG with Xp ∈ TpG is a section through the tangent bundle
in the sense that it assigns to each point in G a vector in the its tangent space.

Given a differentiable map on the manifold χ : G→ G, its push-forward or differential
Dχp : Tp → Tχ(p) maps between corresponding tangent spaces. This operation can be
defined at a point p ∈ G by mapping a representative γ from Tp to equivalent curves
of χ ◦ γ, i.e.,

D(χ)p(γ) = χ ◦ γ. (8)

A particular case of smooth vector fields is the class of left/right invariant (smooth)
vector fields, which is of interest for the following chapters. It is reasonable to con-
sider the smooth and bijective maps induced by right/left multiplication of group

9



(a) (b)

Fig. 5: (a) Visualization of a right-invariant vector field on SO(R, 2), homeomor-
phically identified with a circle. (b) Visualization of a non-invariant vector field on
SO(R, 2). Right-invariant fields on SO(R, 2) can be parametrized with a single value;
this is, in general, not possible for non-invariant vector fields.

elements lg : G→ G, 7→ g · h and rg : G→ G, h 7→ h · g, respectively. Such invariant
vector fields fulfill the criteria

left invariance: Dlg Xp = Xg·p

right invariance: Drg Xp = Xp·g

for all p, g ∈ G, where Dlg describes the push-forward/differential of the left or
correspondingly right translation.

In general, the space of vector fields is a function space, which makes finding a
numerical representation difficult. The class of invariant vector fields, however, can
be uniquely described by a single value: their value at the identity. For the finite-
dimensional manifolds in this work, the space of such invariant vector fields is
finite-dimensional. This greatly simplifies numerical treatment and allows for gener-
ating invariant vector fields using a coordinate-based network in which each output
channel corresponds to one dimension of the matrix group.

An example of a right invariant vector field for the commutative one-dimensional
group SO(2) of two-dimensional rotation matrices, which is topologically equivalent
to a circle, is given in Figure 5. The right invariance of the vector field translates to
the condition of the tangential vectors having the same signed length.

Curves γ : R→ G solving the differential equation

∂γ

∂t
(t) = Xγ(t) (9)

γ(0) = g0 (10)

are called integral curves originating from g0 [44].

In the case of embedded matrix groups, integral curves of right invariant vector fields
X take the form

γ(t) = exp(t ·Xid)g0 (11)

10



where “exp” denotes the matrix exponential

exp(M) :=
∑
i∈N

M i

i! . (12)

This can be shown by differentiating the curve (11) with respect to time:

∂γ

∂t
(t) = exp(tXid)Xidg0 = Xid exp(tXid)g0 = Xexp(tXid)g0 = Xγ(t). (13)

In Section 3.2, the matrix exponential will be used to solve the extended flow equation
on matrix groups numerically.

3 Image registration using velocity flow on matrix
group valued fields

Before going into the analysis, we briefly summarize our approach as outlined in the
introduction. We consider an overall model of the form

min
θ∈Rn

L(S(G(θ)); I1, I2). (14)

The final deformation ϕθ := S(G(θ)) is parametrized by the parameter vector θ. This
parameter vector is first turned into a stationary velocity field νθ := G(θ) by the
neural network G. The solution operator S then computes the final state M(·, 1) of
the flow equation

∂M

∂t
(x, t) = νθ(M(x, t)x̄)M(x,t) (15)

M(·, 0) = id

and returns the final deformation

ϕθ(x) := S(νθ)(x) := M(x, 1)
(

x
1

)
. (16)

In the following, we discuss the individual parts of this approach in more detail:

• Sect. 3.1 covers the generalized flow equation and existence,
• Sect. 3.2 addresses the question on how to efficiently implement the solution

operator S of the flow equation,
• Sect. 3.3 concerns the choice of similarity measure J and regularizer R that form

the objective L, and
• in Sect. 3.4, we discuss the network architecture G.
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In Sect. 4, we discuss numerical results for synthetic deformations and for inter-patient
registration tasks.

The idea behind the generalized flow equation is to obtain more freedom and control
in tuning the hyperparameters to create a bias so that specific (large) deforma-
tions become easier to learn, while preserving the theoretical features of a flow-based
approach, namely “nearly” diffeomorphic deformations and a simple method for
calculating the inverse deformation.

3.1 Extended flow equation and existence

Velocity fields and vector fields. The starting point for including the flow
equation (15) in our approach is the classical stationary velocity field approach, in
which the flow equation takes the form

ϕ(x, t)
∂t

= v(ϕ(x, t)) (17)

ϕ(x, 0) = x.

In contrast to a time-dependent velocity field vt as in (4), this formulation reduces
the computational effort [47] notably. It is used in classical frameworks [47] as well as
frameworks using a neural architecture [10, 22]. If the velocity field v is an element
of C1

0 (Ω), the solution ϕ(·, 1) is continuously differentiable and has a continuously
differentiable inverse, i.e., it belongs to the class of diffeomorphisms. This is a direct
consequence of the results in [9], where the more general case of time-varying velocity
fields was considered.

Diffeomorphic deformations are often desirable for registration tasks in which the
deformation is caused by a physical process, as is commonly the case in biomedi-
cal data. This is due to the fact that non-diffeomorphic deformations, in particular
self-intersections, typically are physically implausible. Unfortunately, not every diffeo-
morphism can be obtained as a solution of (4) with some stationary velocity field [48];
however, known exceptions seem rather implausible for anatomical deformations [48].

Our approach (15) is based on the idea that velocity fields that correspond to basic,
expected deformations – in particular, translations and rotations – should be “sim-
ple” in the sense that they are low-frequency, ideally even constant, and therefore
easy to generate. For the standard SVF model (17), constant velocity fields can only
model homogeneous translations of the whole domain. By employing matrices M(x, t)
instead of vectors v(x, t) as in (15) and constructing the final deformation as in (16),
constant velocity fields can also model affine deformations.

In order to restrict the space of possible matrices, we require that all M(x, t) are
elements of a matrix group G, i.e., of a continuous subgroup of the general linear group
GL(4,R). With the usual matrix multiplication as group operation, these groups are
also Lie groups with a differential (manifold) structure.

12



Then, the time derivative ∂
∂t M(x, t) in the flow equation (5) is an element of the

tangent space TM(x,t)G. This requires the velocity field νθ on the right-hand side to
be an element of TM(x,t)G, which is problematic, as our goal is to parametrize the
velocity field by a neural network: For a general manifold, the parametrization of the
tangent space depends on the location M(x, t), which is not known when deciding on
the structure of the network, and furthermore changes with time.

The key is to restrict the vector fields to the space g of right-invariant vector fields
on G. An element ν(x) =: ν′ ∈ g, ν′ : G → TG of the space of right-invariant vector
fields assigns to each point p ∈ G a vector in the tangent space TpG, denoted by
ν′g. Most importantly, the right invariance assures that each such vector field ν′ is
uniquely described by its value at the identity id. Therefore, the neural network can
be constructed to map into the tangent space TidG of G at the identity.

As an example, consider SO(2), the group of rotations around the origin in R2.
Any such rotation is uniquely parametrized by a rotation angle α. Solving the flow
equation (15) with a right-invariant vector field would take any such rotation and
increase or decrease the rotation angle by the same amount, irrespective of the angle
of the original rotation (Fig. 5).

As the velocity field ν is stationary, but not necessarily constant, this formula-
tion may also capture non-rigid deformations, even when the chosen matrix group
only corresponds to (a subgroup) of rigid deformations. Setting G to the group of
translations T (R), this formulation reduces to the previous SVF setting of (4).

If G contains the subgroup of translations, then the space of possible deformations is
at least as large as the classical SVF approach. However, choosing a more expressible
matrix group may be seen as an over-parametrization of the resulting deformation,
as different velocity fields may lead to the same induced deformation. For example, in
case of G = SE(2), a rotation around the origin can either be achieved by a constant
field ν in which only the angular velocity is non-zero, or by a spatially varying “swirl”
of the translational components of SE(2).

Existence and smoothness. We first justify the use of the generalized SVF/flow
equation (15) by showing the existence and smoothness of the solutions. Note that
νid maps from the image domain Ω into the space of right-invariant vector fields g
evaluated at id, so that νid(x) ∈ TidG.

We are interested in a 3D registration setting, so we now consider subgroups of the
affine group of R3 for G. Its elements can be represented as 4× 4 matrices.

Theorem 1. Let Ω be compact, let g denote the space of right-invariant vector fields
on G ⊂ GL(R, 4), and let ν : Ω → g be such that its evaluation at the identity νid is
Lipschitz continuous. Then the solution M of (5) exists uniquely and remains bounded
in C(Ω,R4×4) when viewed as a map t 7→M(·, t).

Proof. See Section 6.1.
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Algorithm 1 Scaling and Squaring
v0 ← 2−nv ▷ scaling
for j ∈ {0, ..., n− 1} do

v′
j ← Int(vj , x + vj(x))

vj+1 ← v′
j + vj ▷ squaring

end for
return vj+1

Algorithm 2 Generalized Scaling and Sq.
ν0 ← 2−nν ▷ scaling
for j ∈ {0, ..., n− 1} do

Mj ← exp(νj)
ν′

j ← Int(νj , P Mj x̄)
νj+1 ← log(exp(ν′

j) ·Mj) ▷ squaring
end for
return exp(νj+1)

Fig. 6: Left: Classical scaling-and-squaring approach for fast numerical integration
of the flow equation (4) based on a given velocity field v. The interpolation operator
Int(v, x) computes an approximation of v(x). Right: Proposed generalization to the
matrix-valued setting (15) for given velocity field ν. Again the interpolation operator
Int(ν, x) approximates ν(x).

3.2 Numerical integration by scaling and squaring
In the classical setting, stationary velocity fields allow the use of the scaling and
squaring approach [8] to approximate the solution of the ODE (4) numerically. As
can be seen from Alg. 1, the first step is essentially a forward Euler step with step
size 2−n. This is followed by the squaring steps vj+1 ← v′j + vj which correspond for
k = n− j to the “decomposition condition”

ϕ
(
x, 2−k+1) = ϕ

(
ϕ(x, 2−k), 2−k

)
. (18)

Intuitively, the time resolution scales exponentially in n, making this approach
computationally attractive.

As we aim at including the solution operator into a network-based optimization
scheme, this idea is crucial for limiting the network depth. Therefore, we extend the
technique to the setting of matrix groups in order to approximate the solution to (15)
effectively in a discretized setting. The complete algorithm is shown in Alg. 2. The
final deformation field at t = 1 is calculated iteratively, starting with a simple forward
Euler step

M(x, 2−n) = exp
(
2−nνid (x)

)
(19)

and iterating over n squaring steps. The algorithm is based on the “Exponential
discretization” scheme (82), which is further discussed in Section 6.2. There, we also
prove the convergence of the semi-discrete scheme to the continuous solution of (15).

For the matrix-valued deformations considered here, the “decomposition condition”
(18) takes the form

M(x, 2−k+1) = M
(
PM

(
x, 2−k

)
x̄, 2−k

)
M
(
x, 2−k

)
, (20)

where P : R4 → R3 denotes the projection which removes the last component.
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In order to successfully apply the scaling-and-squaring scheme, it is crucial that
the solution of the flow equation satisfies the decomposition condition (20). This is
guaranteed by the following theorem.

Theorem 2. Let M be a solution of the flow equation (5). Assume that Ω ⊂ R3 is
compact and that the velocity term ν : Ω → g satisfies νid ∈ C1(Ω,R4×4). Then M
satisfies the decomposition condition

M(x, 2T ) = M(PM(x, T )x̄, T )M(x, T ) for all T > 0. (21)

Furthermore, when viewed as a map t 7→ M(·, t), it holds that
M ∈ C2([0, 1], C(Ω,R4×4)). where we identify M(x, t) with M(t)(x) as required.

Proof. See Section 6.2.

When applying the scaling-and-squaring scheme for integrating the flow equation,
there are some implementation details to consider:

• Network depth. Each squaring operation doubles the effective resolution in the
synthetic time variable. Setting n = 0 reduces the method to the direct/non-
flow-based approach, where the neural network directly outputs the values for the
displacement vector field. Larger values of n yield a better numerical approximation
of the ODE, at the cost of network depth and additional computational effort. In
this work, n is always set to 7, which yields an implicit time discretization of 1

128 .
• Interpolation. The scaling-and-squaring approach relies on the efficient evalu-

ation of the solution at the current time and at arbitrary points in space. When
discretizing the matrix field on a spatial grid, this requires an interpolation between
elements of the given matrix group. As the matrix group is generally curved and
non-convex, multi-linear interpolation in the surrounding vector space does not
ensure that the matrix-valued fields map to G. Instead, after interpolation, the
matrix fields would, in general, map into R4×4. Therefore, we resort to interpola-
tion on the space of right invariant vector fields on G, which carries vector space
structure. The use of the matrix logarithm, which can be calculated analytically for
SE(3) and SIM(3), allows us to carry out the interpolation in the Lie algebra. The
result is then mapped back to the matrix group using the matrix exponential. This
step guarantees that the interpolated result is still an element of the given matrix
group G.

• Differentiability. The matrix logarithm and exponential can be implemented in a
fully differentiable way; we rely on the implementations for SE(3) and SIM(3) in [43].
The necessary interpolation creates an additional numerical error depending on
the smoothness of the velocity field. With our approach using matrix-valued fields,
specific deformations, such as rigid deformations for G = SE(3), can be recreated
without these numerical approximation errors, which might be advantageous.
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Fig. 7: Residual errors depending on the number of scaling and squaring steps for a
given velocity field for (a) classical integration of the flow equation in Euclidean space
and (b) integration on SE(3) using the modified flow equation.

• Boundary conditions. Deviating from the usual diffeomorphic approach, we do
not fix the boundary but constantly extend the velocity field by its boundary values
outside of the domain with the value at the border. This allows to reconstruct
translations or rigid deformations in the SE(3) setting exactly.

Inverse deformation and validation. Taking the interpolation into account, it
is prudent to ask whether the proposed scaling-and-squaring approach generates
reasonably accurate deformations in practice. To approach this question, note that if

ϕ = S(νθ), (22)

i.e., ϕ solves the flow equation for given velocity field νθ, then the inverse ϕ−1 solves
the flow equation for −νθ:

ϕ−1 = S(−νθ). (23)

This suggests a method for verifying the consistency of the numerical (scaling-and-
squaring) integration scheme: For a given velocity field νθ, compute both ϕνθ

as well
as ϕ−νθ

numerically and measure the residual forward-backward error∫
Ω
|(ϕνi ◦ ϕ−νi − id)(x)|dx. (24)

Similarly, the backward-forward error can be computed from ϕ−νi ◦ ϕνi . If the
discretization is perfectly self-consistent, both residuals should be close to zero.

Fig. 7 shows the results depending on the number of integration steps n. Up to n = 10,
the relative error decreases exponentially before stagnating, which we assume is caused
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by an accumulation of interpolation errors. For our common choice n = 7, the average
forward-backward error is below 0.05 voxels for both the classical flow equation and
our proposed matrix-valued approach on SE(3).

Perfect invertibility is neither expected nor required by the overall approach: After all,
the primary goal of employing the flow equation is to formulate an expressive mapping
from network outputs to a deformation field. However, the good results suggest that
the scheme could be useful for a bidirectional registration approach in which both ϕ
and −ϕ occur in the objective. We investigate this further in the following section.

3.3 Similarity term and regularizer
Regardless of the parametrization of the deformation, the approach (14) still requires
choosing a distance J for the data term as well as a regularizer R.

Similarity. We consider the global negative normalized cross-correlation NCC for
the data term. In order to compare the deformed template T and reference images R
using NCC, we define the mean value T̄ as

T̄ = 1
|Ω|

∫
Ω

T (x)dx (25)

and R̄ analogously. The data term is then given by

J(R, T ) := 1−NCC(R, T ) := 1− ⟨T − T̄ , R− R̄⟩L2√
∥T − T̄∥2

L2∥R− R̄∥2
L2 + ϵ

∈ [0, 2]. (26)

This corresponds to the negative cosine of the angle between the vectorized zero-mean
images, and is an established multi-modal similarity term due to its invariance to
affine intensity transformations [49]. We stabilize the division by adding ϵ = 10−5 to
the square root in the denominator.

Regularizer. To prevent folding caused by the discretization and/or interpolation,
we include a regularization term that penalizes Jacobians with determinant smaller
than a threshold ϵ > 0 via [50]:

Rϵ(ϕ) :=
∫

Ω
max[− det(Dϕ(x)) + ϵ, 0]dx. (27)

In our experiments, we set ϵ = 0.01 in order to decrease the likelihood of the first-order
optimization method accidentally passing into a region of zero or negative determinant
due to the non-infinitesimal step size.

The determinants can be evaluated in the discretized setting on a (transformed) grid
by dividing each voxel into five 3-simplices/tetrahedra (Fig. 8) and computing their
oriented volume. The latter are then summed with weights of 1

6 for the outer, and 1
3
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Fig. 8: Decomposition of a voxel into one inner and four outer tetrahedra. The edges
of the tetrahedra are drawn with dotted lines. Evaluating the oriented volume of all
tetrahedra after deformation allows to detect foldings.

for the inner tetrahedra. This approach is a more isotropic variant of the one used
in [51], where all tetrahedra are extended from a single vertex.

In addition to that, we also employ gradient or Hessian regularisation to encourage
smoothness. The respective measures are defined as

Rg(ϕ) :=
∫

Ω

n∑
i=1
∥∇ϕi∥2dx, Rh(ϕ) :=

∫
Ω

n∑
i=1
∥D2ϕi∥2

F dx, (28)

where ∥ · ∥F denotes the Frobenius norm, evaluated at each component of the defor-
mation vector field ϕ : Ω → Rn. Translations lie in the kernel of the sublinear
functional Rg and are not penalized. Analogously, affine transformations are not
penalized by Rh.

Bidirectional approach. The simplicity of obtaining both ϕ and ϕ−1 suggests a
bidirectional approach: Instead of solving only

min
θ∈Rn

L(ϕθ; I1, I2) with ϕθ = S(G(θ)), (29)

in the bidirectional setting, we minimize

min
θ∈Rn

1
2(L(ϕθ; I1, I2) + L(ϕ−1

θ ; I2, I1)), where ϕ−1
θ := S(−G(θ)). (30)

An appealing feature of this approach is that the loss is invariant with respect to the
order of I1 and I2, when the deformation is inverted analogously.

3.4 Network architecture and optimization

Network architecture. The network architecture for generating the velocity field
νθ is visualized in Fig. 9. The cuboid image domain is uniformly scaled to fit into
the unit cube, Ω ⊂ [−1, 1]3. The network accepts coordinates as input and returns
a right invariant vector field on G from the Lie algebra g, which is a k-dimensional
vector space. The batched output forms a four-dimensional tensor with dimension
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Fig. 9: Network architecture of G for generating the velocity field. The matrix-valued
velocity field is described by a neural implicit representation that subsequently drives
the evolution of a matrix field, generating a deformation.

nh × nw × nz × k. Following [28], the neural field is designed as a (fully-connected)
multi-layer perceptron with sinusoidal activation functions. We modified the pro-
posed initialization scheme by initializing the weights of the last linear layer uniformly
between [−10−4, 10−4]. This ensures that the initial deformation is close to the identity
transformation.

The network consists of five layers of 512 neurons each. Additionally, residual connec-
tions were added between layers 1 to 5. The neural velocity field is evaluated on an
equidistant, rectangular grid to perform its subsequent integration.

Overall, the network contains between 1.31 · 107 and 1.33 · 107 trainable weights,
depending on the dimension of g.

Low-frequency bias. Studies such as [52] show that neural networks exhibit a low-
frequencies bias. To mitigate this effect, we scale the weights of the first layer with a
preset scalar hyperparameter w0 as is done in [28]:

h1
j = sin

( 3∑
i=1

w0ω1
ji · xi + b1

j

)
. (31)

Here, the variable xi represents the i-th image coordinate, h1
j denotes the value of the

j-th hidden neuron in the first layer, while ω1 and b1 are the weights and biases of
the first layer, respectively.

The scaling increases the frequencies of the sinusoids in the first layer during ini-
tialization which in return increases the curvature of the loss with respect to the
corresponding weight parameters For w0 = 0, the network output does not depend on
the input coordinates, but only on the biases. This produces channel-wise constant
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fields, yielding a translation for the SVF and a rigid deformation for the SE(R, 3)
setting. Smaller values of w0 generally yield smoother deformations, whereas larger
values allow the reconstruction of finer deformations.

Optimization and post-scaling. For the optimization, we used ADAM [53] in
full-batched mode, so there was no stochastic uncertainty introduced by sampling.
Nonetheless, the method is not fully deterministic, as the network weights are initial-
ized randomly and a stochastic gradient estimation is performed for the interpolation
while integrating the velocity fields. As we found that the network tends to yield
relatively large initial velocity fields, we introduced a scalar hyperparameter for post-
scaling the field from the output of the network. In our experiments, the factor was
tuned for the specific application and always lied between 10−4 and 10−1]. In the SE(3)
and SIM(3) settings, we used two different factors, one for the rotational part (angu-
lar velocities) and one for the translational part, to accommodate their inherently
different range.

Hyperparameter tuning was conducted on the learning rate (lr), the post-scaling
factor (sf), and w0. Using [54], for each experiment and chosen matrix group, a tree-
structured Parzen estimator was utilized and evaluated for 120 trials, each consisting
of the registration of five randomly chosen volume pairs. The choice of subsequent
evaluations was controlled by the estimation of the Parzen estimator. In the initial
search space, w0 was uniformly distributed over the interval [0, 30], whereas the scal-
ing factor and learning rate were both logarithmically distributed over [10−5, 10−1].
Results of the tuning process are summarized in Appendix A.

4 Numerical Results
To validate the proposed method and evaluate its performance, we conducted
numerical experiments both on synthetic and real-world data.

The implementation for the stationary velocity fields is based on [10], but with dif-
ferently chosen hyperparameters for the learning rate, scaling factor after integration,
and frequency parameter ω0, which yielded better results in our implementation.
Hyperparameters used in the experiments are listed in Appendix A.

4.1 Datasets

Real-world data. We benchmarked on the OASIS-1 dataset [7], which consists
of 414 brain MRI scans of individual patients in different stages of dementia and a
healthy control group. We used 5 pairs for hyperparameter tuning and the rest for
evaluation. The image dimensions are 160 × 192 × 224 voxels. Besides the intensity
values, each dataset contains segmentations on 35 regions, conducted by experts. We
used the skull-stripped, affinely pre-aligned volumes provided in the dataset.

Synthetic data. To validate our method on data with a known ground truth
deformation field, which is typically unavailable for real-world data, we generated an
artificial dataset based on random non-linear deformation fields.
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As our method especially aims at recovering deformations with a large rigid motion, we
chose 73 = 343 equidistantly distributed control points in the image domain Ω ⊂ R3

and applied a rotation around a random axis to these points. Following [55], the axis
was sampled randomly from a uniform distribution over the unit sphere; the angle
was drawn uniformly distributed over the interval [−π

4 , π
4 ], producing rotations up to

45 degrees. The rotation was then augmented by a random translation with its length
chosen uniformly distributed over [0, 0.1].

To this global rigid deformation, we then added a non-rigid component by perturbing
each control point by a random translation with length uniformly distributed over
[0, 0.05]. The dense synthetic deformation vector field ϕsyn was ultimately computed
by interpolating between the perturbed control points using radial basis functions
based on second-order polyharmonic splines [56].

To generate the image pairs, the deformation was applied to a zero-padded reference
image from the OASIS dataset, to which Gaussian noise with mean zero and standard
derivation 0.01 was added, resulting in a synthetic template image. Some exemplary
deformations can be seen in Fig. 10.

4.2 Benchmark Metrics
For the evaluation of the results, we used different metrics:

• Root-mean-square error. For the synthetic test data with known ground
truth, we computed the root-mean-square error (RMSE) between the recovered
deformation field and the ground truth deformation field, measured in pixels:

RMSEΩM
(ϕsyn, ϕreg) =

√
1
|ΩM |

∫
ΩM

|ϕsyn − ϕreg|2 (32)

In this, we masked the background of the reference image by design of the domain
ΩM so that the deformation field was compared to the ground truth only at points
where image information was available.

• Dice score. For the real-world data, no dense ground truth was available. To still
get a coarse indication of the registration quality, we followed an approach common
in medical image registration when segmentation annotations are available. Given
two segmented regions (i.e., subsets of Ω) S1 and S2 on the first and second image
and a computed deformation ϕ, we deformed S2 using ϕ and computed the distance
to S1 using the (forward) Dice score

DS(S1, ϕ−1(S2)), (33)

where

DS(A, B) = 2|A ∩B|
|A|+ |B| . (34)
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Fig. 10: Exemplary slices from the 3D OASIS benchmark dataset (left). In order to
accurately evaluate the full registration process, we generated synthetic ground truth
deformations and deformed the images (center). The color overlay (right) highlights
the differences (reference image in red, deformed image in green). While this example
exhibits only a small roto-translational component, the full synthetic dataset contains
rotations up to 45 degrees.

As this metric depends on the transformation direction, we also list the backward
Dice score DS(ϕ(S1), S2).

• SSIM. As an additional metric, we computed the Structural Similarity

SSIM(I1, I2 ◦ ϕ) (35)

between reference and deformed template image, as this is closer to human percep-
tion than simpler norm-based metrics [57]. Note that this metric is purely based
on intensity values and that there are generally many deformations producing the
same deformed image.
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method RMSE (mean) RMSE (median)
Initial 123.84 128.53
SVF [10] 1.73 1.52
SE(3) (ours) 1.33 1.06
SIM(3) (ours) 1.26 1.05

Fig. 11: RMSE of fitting large synthetic deformations using the classical SVF
approach and the proposed approach with two different matrix fields SE(3) and
SIM(3). The method is evaluated for 409 random deformations, and the RMSE is
computed after 120 iterations each. The proposed parametrization aids the optimiza-
tion process in finding a more precise representation of the deformation, resulting in
a lower RMSE. Best scores are typeset in bold, second-best scores are underlined.

Lastly, we counted the percentage of sub-pixel simplices of the deformed grid at which
the diffeomorphism property det Dϕ(x) < 0 was violated; for details, see Section 3.3.

4.3 Results
All benchmarks were implemented in PyTorch 2.3.0 and performed on a 24-core AMD
EPYC 74F3 system with 256GB of RAM, 3x NVIDIA A100 and CUDA 12.0.

Fitting deformations. We first validated the effectiveness of the proposed approach
for expressing arbitrary deformations with large rigid components by reconstructing
synthetic deformations generated as described in Section 4.1. As optimization loss, the
squared RMSE was used. Note that despite being convex in the resultant deformation,
the loss term and, thereby, the optimization is non-convex in the network weights θ.

The results in Fig. 11, evaluated for 409 synthetically generated deformations, show
that the matrix field-based approaches both using SE(3) and SIM(3) allow to approx-
imate the deformation field better than with a classical SVF approach. As initial
error, we measured the difference between the synthetic deformation and the identity
mapping.
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SVF [10] 43.47 45.64
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Fig. 12: Registration of synthetically generated deformations using the classical SVF
approach and the proposed approach with two different matrix fields SE(3) and
SIM(3). The RMSE in the deformation after 120 iterations is shown, computed for
409 random deformations. In this particular setting, SVF seems to fail at capturing
the rotations, while the parametrization with matrix groups produces deformations
close to the ground truth in most cases.

Registering synthetic deformations. Figure 12 shows the results for the pairwise
image registration on a set of 409 image pairs with synthetic deformations. While
the SVF approach greatly struggled to reconstruct the deformations here, presumably
due to their large rigident, the proposed use of matrix fields allowed us to robustly
approximate the correct global deformation.

This behavior is clearly visible in Fig. 1 and Fig. 2 shown in the introduction, in which
the resultant images as well as an exemplary slice of the deformation field are depicted
under small and large deformations. It illustrates how the matrix group approach is
able to capture even large rotational deformations, whereas the use of an SVF tends to
align the intensity values by local deformations instead of a global rotation, resulting
in the large RMSE observed in Fig. 12.

To further examine at which point the SVF approach breaks down, we repeated the
experiment by varying the magnitude of the synthetically generated deformations and
measured the RMSE of the recovered deformations. The experiments were performed
both with and without a global rotation, and the results are presented in Fig. 13.

To this end, we generated 10 rotation-free volumes by fixing the rotation angle to zero
and linearly scaling the magnitude of the global translation as well as the local non-
rigid deformation, such that the global translation was scaled between 0% (volume
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Fig. 13: Registration results of OASIS image pairs with synthetically generated
nonlinear deformations of increasing magnitude. The RMSE between the recovered
deformation field and the ground truth is shown. In the left figure, only a global trans-
lation and local perturbances are performed. The global translation increases from
0-10% of the domain width from left to right. In the right figure, a global rotational
component is further added whose angle increases from 0-90%. Without a global rota-
tion, all methods work reasonably well even for larger translations. In the presence of
global rotations, however, the classical SVF breaks down already at smaller angles,
whereas even large rotations up to 70° only have a small impact on the RMSE when
using the proposed parametrization with matrix-valued fields (SE(3), SIM(3)), .

pair 1) and 10% (volume pair 10) of the domain width. We then generated 10 more
volumes, in which a rotation was added, and the angle was linearly increased from 0°
(volume pair 1) to 90° (volume pair 10). All 20 volumes were generated separately,
that is, with different random components.

Fig. 13(a) shows that the SVF, as well as both matrix-based methods, performed
reasonably well even under large translations. In the presence of additional global
rotations, however, the picture changed considerably. As can be seen in Fig. 13(b),
the SVF-based approach broke down completely once the rotation angle exceeded 30°,
ultimately yielding deformations that hardly had a lower RMSE than the identity.
The matrix-valued approaches, in contrast, returned stable results close to the ground
truth even under larger rotations, and only started deteriorating at rotations with an
angle greater than 70°.

We conclude that at least in these experiments, the matrix group approach achieved
the goal of improving the network’s ability to find deformations with large rotational
components, and clearly outperformed the approach solely based on SVFs. In all
experiments, we used NCC as similarity term and the Hessian regularisation Rh,
scaled with factor 2 · 10−5.
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method Dice score ± std. dev. (↑) Dice score backwards (↑) mean Dice score (↑) det(Jϕ) ≤ 0 (↓)
initial 0.5838 ± 0.0610 0.5838 ± 0.0610 0.5838 ± 0.0610 -
SVF [10] 0.8153 ± 0.0231 0.8002 ± 0.0233 0.8077 ± 0.0223 2.35 · 10−6

bidir. SVF 0.8149 ± 0.0235 0.8160 ± 0.0210 0.8154 ± 0.02197 3.58 · 10−6

SE(3) [ours] 0.8159 ± 0.0231 0.8001 ± 0.0233 0.8080 ± 0.0229 1.85 · 10−6

bidir. SE(3) [ours] 0.8148 ± 0.0238 0.8159 ± 0.0216 0.8153 ± 0.0224 2.90 · 10−6

SIM(3) [ours] 0.8157 ± 0.0233 0.8009 ± 0.0233 0.8083 ± 0.0231 1.95 · 10−6

bidir. SIM(3) [ours] 0.8151 ± 0.0236 0.8162 ± 0.0212 0.8156 ± 0.0221 3.20 · 10−6

SyN [58] 0.8062 ± 0.0248 0.8069 ± 0.0235 0.8066 ± 0.0241 0

Table 2: Results on inter-patient 3D registration on pre-aligned and skull-stripped
volumes of the OASIS-1 dataset. The classical (SVF) and proposed the matrix-valued
approaches (SE(3) and SIM(3)) all yield similar Dice scores after registration. A bidi-
rectional approach improves the backward Dice score and the mean of both scores.

method Dice score, forward (↑) SSIM, forward (↑) fraction with det(Jϕ) ≤ 0 (↓)
initial 0.1178 ± 0.1001 0.7987 ± 0.011 -
SVF [10] 0.7278 ± 0.0628 0.9444 ± 0.0170 4.04 · 10−7

SE(3) 0.7223 ± 0.1012 0.9479 ± 0.0158 7.65 · 10−7

SIM(3) 0.6199 ± 0.2416 0.9367 ± 0.0187 4.75 · 10−7

SyN [58] 0.4987 ± 0.3081 0.9572 ± 0.0266 4.10 · 10−6

Table 3: Results on unidirectional registration of unaligned OASIS brain scans. SVF
and SE(3) work comparably well in terms of Dice score, beating the SyN method by
a wide margin. Note that Dice score and SSIM provide only limited insight into the
quality of the actual deformation field, compare Fig 2 and Fig 13.

Registering real-world OASIS data. Finally, we tested our approach on the task
of inter-patient registration with real-world data. We used NCC as image similarity
metric, gradient regularization Rg on the final displacement field, scaled with a factor
of 0.1, and the folding prevention term Rϵ with a factor of 200. We compared the
classical SVF method with the matrix field-based methods for SE(3) and SIM(3), each
in forward and bidirectional mode (30). Furthermore, we included the SyN method
[58] with setting (100, 100, 25) for the maximal number of optimization steps in the
pyramid in the comparison. The bidirectional approach improves the backward Dice
score and the mean Dice score in the parametrizations with an SVF and the matrix
field approaches, as expected.

For the experiments, we registered 150 randomly selected image pairs from the OASIS-
1 dataset. Additionally, we benchmarked on a task with larger deformations starting
from the unaligned brain scans from [7]. We used FreeSurfer [59] for skull stripping
the unprocessed volumes. As there are no ground truth deformation fields available,
we used the Dice score as a proxy. For the second task, we furthermore list the SSIM
metric.

The results of the benchmark are presented in Table 2 and Table 3. They show that,
in general, the matrix-group approach performed similarly well as the classical SVF
approach, both for the pre-aligned images as well as for the unaligned brain scans. In
the unaligned case, that is, for larger deformations, both approaches also improve the
performance on the Dice score compared to SyN (Table 3).
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These results stand in contrast to the ones on the synthetic examples presented in
Fig. 12 and Fig. 13, in which the matrix-based approaches SE(3) and SIM(3) per-
formed significantly better than SVF. The reason for this performance difference likely
lies in the nature of the underlying deformations: For the pre-aligned images, there
are only marginal global deformations sought, and even in the unaligned case, the
global rotational component of the deformation is relatively small.

Furthermore, in the synthetic examples, we were able to compare the recovered and
ground truth deformation fields directly. On the OASIS data set (and other real-world
image registration data), no dense ground truth deformation is available, which is
why we resort to comparing Dice scores and SSIM. As these metrics, however, are
only based on the segments and intensity values and thereby not explicitly on the
deformation itself, they ultimately provide only limited insight into the quality of the
actual deformation field. Therefore, even though SVF generated good results in terms
of the deformed images, it might be obscured that the deformation is far from an
actually sought “truth”, see Fig. 2 and Fig 13.

5 Conclusion
In this paper, we proposed, discussed and analyzed a novel approach to deformable
image registration which extends the concept of integrating stationary velocity fields
to matrix groups. We proved the unique existence of a solution to the extended
flow equation in Thm. 1 and derived a scaling-and-squaring algorithm to efficiently
approximate this solution, see Alg. 2.

Fairly evaluating non-linear image registration methods on real data is notoriously
hard, as there is typically no ground truth for the deformation field available. As
we observed, popular methods such as SVF can perform well in terms of intensity
value based metrics as well as proxy metrics such as the Dice score on segmentations,
while the generated deformation field might be far from the ground truth or a desired
deformation.

Our experiments indicate that moving velocity field and flow equation from a purely
translational appraoch (as in SVF) to the matrix group setting can ameliorate this
issue. This is especially the case when the “true” deformation field comprises larger
affine deformations such as a global rotation.

The matrix-based formulation allows the specification of the velocity field in a chosen
matrix group which naturally covers a wider range of deformations. In our approach,
we parametrize the matrix group by implicit neural representations, allowing for opti-
mization techniques from machine learning. In future work, it will be interesting to
adapt this idea to other network architectures, such as UNet- or Transformer-based
approaches.

The formulation with a matrix group gives a fairly general method to choose between
different parametrization schemes. Further paths to explore include using the affine
group Aff(3) as parametrization for the velocity field. The lack of a closed form for the
matrix exponential and logarithm in this setting, however, would require a different
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interpolation strategy or the use of iterative methods, making the optimization more
difficult and time-consuming. Other suitable matrix groups might also be considered.

Another interesting direction of research concerns the extension of matrix-valued fields
to approaches with a non-stationary flow such as the LDDMM framework. However,
this would require a different numeric integration method than scaling-and-squaring,
which was central to our approach.

Overall, we hope that the proposed matrix group approach provides a building block
for creating robust registration methods that can cope with large deformations not
only in terms of image similarity, but also in terms of the quality of the deformation
fields.

6 Proofs
6.1 Proof of Theorem 1
Proof. Embedding the manifold of a matrix group in a surrounding vector field space
(here R4×4 with the operator norm) allows the use of classical results of ODE theory
in this setting. For the matrix subgroup G ⊂ GL(R, 4), the space of continuous matrix
fields C(Ω, G) can be embedded in the unitary function Banach algebra

B := C(Ω,R4×4) (36)

with the corresponding pointwise supremum norm on the compact domain Ω ⊂ Rk,

∥B∥B := sup
x∈Ω
|B(x)|F for B ∈ B, (37)

and pointwise matrix multiplication.

Crucially, this norm is sub-multiplicative with regard to the pointwise multiplication
of matrix fields. Consider for now M as a univariate function of time M : [0, 1]→ B.
The time-invariant case of Equation (5) can then be written compactly as

∂M

∂t
= f(M) (38)

M(0) = id (39)

with

f : B → B, (40)

f(B) :=
(

x 7→ i (ν(PB(x)x̄))B(x)

)
, (41)

for the canonical embedding i which extends the right invariant vector fields on G to
the vector fields on R4×4, and the projection P : R4 → R3 which removes the last
component. For the sake of readability, we will omit this embedding in the following.
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As ν : R3 → g maps each point to a right-invariant vector field on the manifold G,
this vector field is uniquely described by its value at the identity of the matrix group:

ν(PB(x)x̄)B(x) = νid(PB(x)x̄)B(x). (42)

By sub-multiplicativity of the matrix norm and the compactness of Ω (by which νid)
is bounded on Ω), it follows that

∥f(B)∥B = sup
x
|νid(PB(x)x̄)B(x)| ≤ sup

x
|νid(PB(x)x̄)| sup

x
|B(x)| = Cν∥B∥B, (43)

yielding that f is linearly bounded. By Gronvall’s inequality [60] it holds

∥M(t)∥B ≤ ∥M(0)∥BeCν t = ∥id∥BeCν t, (44)

hence, every solution M(t) is bounded for every finite time interval.

Next, we show that f is locally Lipschitz continuous. For S, T ∈ B, it holds

∥f(S)− f(T )∥B = sup
x∈Ω
|ν(PS(x)x̄)S(x) − ν(PT (x)x̄)T (x)|F . (45)

Using (42) and adding zero, we obtain

= sup
x∈Ω
| (νid(PS(x)x)− νid(PT (x)x̄)) S(x)− νid(PT (x)x̄)(T (x)− S(x))|F . (46)

By the triangle inequality and the boundedness of νid, we can estimate

≤ sup
x∈Ω
| (νid(PS(x)x̄)− νid(PT (x)x̄)) S(x)|F + sup

x∈Ω
Cν |T (x)− S(x)|F . (47)

Using sub-multiplicativity,

≤ sup
x∈Ω
|νid(PS(x)x̄)− νid(PT (x)x̄)|F sup

x′∈Ω
|S(x′)|F + Cν∥T − S∥B, (48)

and then Lipschitz continuity of νid, we arrive at

≤ Lν sup
x∈Ω
|PS(x)x̄− PT (x)x̄| ∥S∥B + Cν∥T − S∥B. (49)

Finally, using sub-multiplicativity, we conclude

∥f(S)− f(T )∥B ≤ Lν∥S − T∥B sup
x∈Ω
|x̄| ∥S∥B + Cν∥T − S∥B (50)

= (Lν sup
x∈Ω
|x̄| ∥S∥B + Cν)∥T − S∥B. (51)

Hence, as M(t) is bounded for a bounded time interval, f is Lipschitz on some open
neighborhood of the image of M over this time. By Picard’s theorem for Banach
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space-valued functions [61], there exists a unique solution M : [0, 1]→ B of Equation
(5). In fact, as the vector field ν(x is tangential on G everywhere, it holds, that
M : [0, 1]→ C(Ω, G). By (44), this solution remains finite for finite time, in particular
also on the unit interval [0, 1], which is important for the extended flow equation.

6.2 Proof of Theorem 2
Proof. The proof consists of four steps. Throughout the proof, we will associate
M(t)(x) with M(x, t):

1. We first show that M ∈ C2([0, 1],B).
2. We then prove that a semi-discrete forward Euler scheme in time, formulated in

the embedding space B, converges to the solution of the flow equation (5).
3. We afterwards construct an exponential discretization scheme on the manifold

and show convergence towards the Euler scheme. This discretization satisfies the
decomposition condition by construction. This scheme also builds the foundation
of the scaling-and-squaring approach of Alg. 2.

4. Finally, we prove that the decomposition condition is preserved under convergence
and therefore transfers to the fully-continuous solution of the flow equation.

Calculating M ′′. We aim at calculating the second derivative M ′′ of the solution
of the extended flow equation with respect to the time. To this end, we first calculate
the derivative of

fid : B → B, (52)
B 7→ νid(PB(·)̄·) ∈ B. (53)

We denote the normed function space of continuous vector-valued functions as
C(Ω,R3) with the corresponding supremum norm and apply the decomposition
fid = f1 ◦ f2 with f2 : B → C(Ω,R3), B 7→ PB(·)̄· and f1 : C(Ω,R3) → B,
V 7→ νid(V (·)). We show that the Fréchet derivative of f1 at V is the left-multiplication

Df1(V )(h) = (Dνid)(V (·))h(·). (54)

This follows from

sup
x∈Ω
|νid ((V + h) (x))− νid(V (x))− (Dνid)(V (x))h(x)|F (55)

= sup
x∈Ω
|νid (V (x)) + (Dνid)(V (x))h(x) + o(|h(x)|)− νid(V (x))− (Dνid)(V (x))h(x)|F

(56)
= sup

x∈Ω
|o(|h(x)|)|. (57)
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As νid ∈ C1(Ω,R4×4), it has a uniformly continuous derivative on the compact domain
Ω and is therefore uniformly differentiable on Ω. By definition, this means that [62]

∀ϵ > 0∃δ > 0 : ∀x ∈ Ω ∃Lx ∈ L(R3,R4×4) :

∀h : 0 < |h| ≤ δ : |νid(x + h)− νid(x)− Lxh|
|h|

≤ ϵ. (58)

Hence, the convergence of the o-term in Eq. (57) holds uniformly for all x ∈ Ω, and
we can conclude

∥νid ((V + h)(·))− νid(V (·))− (Dνid)(V (·))h(·)∥B = o(∥h∥B), (59)

which shows the claim in (54).

The mapping f2 is linear and therefore coincides with its Fréchet derivative:

(Df2(B))(h) = f2(h) = Ph(·)̄·. (60)

Collecting the results, one can conclude from the chain rule for the Fréchet derivative:

(Dfid(B))(h) = Df1(f2(B))(Df2(B)(h)) (61)
= Dνid(PB(·)̄·)Ph(·)̄·. (62)

We return to calculating M ′′ using M ′(t) = f(M(t)), see (38):

M ′′(t) = (f ◦M)′(t) = Df(M(t)) ◦M ′(t). (63)

We can further expand on this by using M ′(t) = f(M(t)) again:

. . . = Df(M(t)) ◦ f(M(t)). (64)

Equation (42) and inserting the definition of f yield for the multiplication with the
identity operator e : B → B, e(h) = h that

. . . = D(fide)(M(t)) ◦ f(M(t)). (65)

Using the product rule for bilinear pointwise function multiplication in B for the left
term and defining the left- and right-multiplication operator as

L : B → L(B,B), (L(g)) (h) = g · h (66)
R : B → L(B,B), (R(g))(h) = h · g, (67)

we get

. . . = (L(fid(M(t))) + R(M(t))(Dfid(M(t)))) ◦ f(M(t)). (68)
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Substituting the chain rule calculated in (62), we obtain

. . . = L(fid(M(t)))f(M(t)) + R(M(t))(Dνid(PM(·)̄·)Pf(M(t))(·)̄·) (69)

which is as a combination of continuous functions continuous and, accordingly, ensures
M ∈ C2([0, 1],B). Additionally, as [0, 1] is compact, the range M ′′([0, 1]) is compact
and therefore bounded.

Euler discretization. For some fixed end time T > 0, consider an equidistant time
discretization {t0 = 0 < t1 < . . . < tn = T} into n intervals of length δt := T

n and the
associated forward-Euler discretization of the embedded flow equation (38)

Meu(tk+1) := Meu(tk) + f(Meu(tk))(tk+1 − tk)
Meu(t0) := id. (70)

Note that due to the embedding, each Meu(tk) maps from Ω into R4×4.

Our goal is to show convergence of Meu(tn) to M(tn), following the proof for the scalar-
valued case in [63, Sect. 2.2, Thm. 2.4]. This requires an estimate of the truncation
error. For this, we first use the fundamental theorem of calculus for Bochner integrals
[64] twice and rearrange:

M(tk+1) = M(tk) +
∫ tk+1

tk

M ′(s)ds (71)

= M(tk) +
∫ tk+1

tk

(
M ′(tk) +

∫ s

tk

M ′′(t)dt

)
ds (72)

= M(tk) + (tk+1 − tk)M ′(tk) +
∫ tk+1

tk

∫ s

tk

M ′′(t) dt ds. (73)

This is equivalent to

M(tk+1)−M(tk)− (tk+1 − tk)M ′(tk) =
∫ tk+1

tk

(∫ s

tk

M ′′(t)dt

)
ds. (74)

Taking the norm on both sides and using the Bochner inequality [64] (recall that ∥·∥B
is the supremum norm as defined in (37)), we obtain

∥M(tk+1)−M(tk)− (tk+1 − tk)M ′(tk)∥B ≤
∫ tk+1

tk

∫ s

tk

∥M ′′(t)∥B dt ds (75)

≤ (tk+1 − tk)2

2 max
t∈[tk,tk+1]

∥M ′′(t)∥B. (76)

Noting that M ′(tk) = f(M(tk)), this provides a bound for the one-step truncation
error of the forward Euler method depending on the norm of the second derivatives
M ′′.
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This extends the first step of the convergence proof of the forward Euler method for
the scalar-valued case in [63, Sect. 2.2, Thm. 2.4] to the Banach space-valued case;
the remainder of the proof is identical if one replaces absolute values with ∥ · ∥B. This
ensures

∥M(t)−Meu(t)∥B ≤
etLν − 1

Lν

δt

2 max
s∈[0,t]

∥M ′′(s)∥B, (77)

where L′ν is the Lipschitz constant of f . Lipschitz continuity of f on some open
neighborhood of the image of M was shown in Eq. (51) during the proof of Thm. 1.
It requires Lipschitz continuity of νid, which is ensured here by the C1 assumption on
νid and compactness of Ω.

Overall, (77) proves convergence of the (final-time) solution of the forward Euler
approximation Meu(T ) to the solution M(T ) of the time-continuous flow equation,
i.e.,

Meu(T )→M(T ) in O(δt). (78)

Exponential discretization. For the second step, in order to motivate the construc-
tion of the exponential discretization scheme, consider the matrix flow equation (15)
with spatially constant velocity µ ∈ g, starting at g0 ∈ G:

∂M

∂t
(x, t) = µM(x,t) (79)

M(·, 0) = g0. (80)

Due to the right invariance of µ, the solution takes the analytic form (compare (11)):

M(x, t) = exp(tµid)g0, (81)

where exp denotes the matrix exponential. Applying this idea for each time interval
[tk, tk+1] and to each point x separately, and setting µ := ν(PM(tk)x̄) and g0 :=
M(x, tk), we obtain the time-discrete exponential scheme

Mex(tk+1) := exp((tk+1 − tk)νid(PMex(tk )̄·)) Mex(tk)
Mex(t0) := id. (82)

Fixing x ∈ Ω and rewriting the exponential scheme evaluated at the endpoint T as a
product of matrices, results in

Mex(x, T ) =
n−1∐
k=0

exp (δtνid (PMex (x, tk) x̄)) , (83)
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where
∐

denotes the matrix product evaluated from right to left, i.e.,

n−1∐
k=0

Ak := An−1An−2 · · ·A1A0. (84)

We will later need a bound on the norm of Mex. We use the fact that | exp(M)| ≤ e|M |

to derive

|Mex(x, tk)| ≤
k−1∏
j=0
| exp (δtνid (PMex (x, tj) x̄)) | (85)

≤
k−1∏
j=0

e|δtνid(P Mex(x,tj)x̄)| (86)

= e

∑k−1
j=0
|δtνid(P Mex(x,tj)x̄)|

. (87)

As νid ∈ C1(Ω,R4×4) is bounded on the compact set Ω by some Cν > 0, we continue

|Mex(x, tk)| ≤ e

∑k−1
j=0

(δtCν ) (88)
= etkCν (89)
≤ eT Cν =: C ′ν,T . (90)

Importantly, this bound depends neither on the time step δt nor on the spatial
position x.

In order to bound the difference between the forward Euler iteration in the previous
section and the exponential approach defined by (82), we define the error

ek(x) := Meu(x, tk)−Mex(x, tk). (91)

The proof for bounding the error closely follows the strategy for proving convergence
of the classical forward Euler method [63]. By definition of Meu and Mex,

|ek+1(x)| = |Meu(x, tk) + δtν(PMeu(x, tk)x̄)Meu(x,t)

− exp (δtνid (PMex (x, tk) x̄)) Mex(x, tk)|. (92)

We rewrite the matrix exponential by its Taylor series:

|ek+1(x)| ≤
∣∣∣∣Meu(x, tk) + δtνid(PMeu(x, tk)x̄) Meu(x, tk)

−
∞∑

l=0

(δt)lνid (PMex (x, tk) x̄)l

l! Mex(x, tk)
∣∣∣∣. (93)
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Reordering the terms and using the triangle inequality, we obtain

|ek+1(x)| = |Meu(x, tk)−Mex(x, tk)|
+ δt|νid(PMeu(x, tk)x̄)Meu(x, tk)− νid(PMex(x, tk)x̄)Mex(x, tk)|

+
∣∣∣∣∣
∞∑

l=2

(δt)lνid (PMex (x, tk) x̄)l

l! Mex(x, tk)
∣∣∣∣∣ (94)

= |ek(x)|
+ δt|f(Meu(tk))(x)− f(Mex(tk))(x)|

+
∣∣∣∣∣
∞∑

l=2

(δt)lνid (PMex (x, tk) x̄)l

l! Mex(x, tk)
∣∣∣∣∣ . (95)

We rewrite the second term in the sum using the Lipschitz estimate (51):

δt|f(Mex(tk))(x)− f(Meu(tk))(x)| (96)
≤δt(Lν(sup

x∈Ω
|x̄|∥Mex(tk)∥B + Cν)∥Meu(tk)−Mex(tk)∥B (97)

(90)
≤ δt(Lν(sup

x∈Ω
|x̄|C ′ν,T + Cν)∥ek∥B (98)

=δtC
′′
ν,T ∥ek∥B (99)

for some constant C ′′ν,T .

We continue bounding the third term in (95):∣∣∣∣∣
∞∑

l=2

(δt)lνid (PMex (x, tk) x̄)l

l! Mex(x, tk)
∣∣∣∣∣ (100)

= (δt)2

∣∣∣∣∣νid (PMex (x, tk) x̄)2
∞∑

l=0

(δt)lνid (PMex (x, tk) x̄)l

(l + 2)! Mex(x, tk)
∣∣∣∣∣ (101)

≤ (δt)2 |νid (PMex (x, tk) x̄)|2
∞∑

l=0

∣∣∣(δt)lνid (PMex (x, tk) x̄)l
∣∣∣

l! |Mex(x, tk)| (102)

(90)
≤ (δt)2(Cν)2eδtCν C ′ν,T (103)

=: (δt)2C ′′′ν,T . (104)

Inserting both bounds into (95) leads to

|ek+1(x)| ≤ |ek(x)|+ δtC
′′
ν,T ∥ek∥B + (δt)2C ′′′ν,T . (105)
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Taking the supremum on both sides yields:

∥ek+1∥B ≤ (1 + δtC
′′
ν,T )∥ek∥B + (δt)2C ′′′ν,T . (106)

Iterating this estimate leads to an estimate for the final error en:

∥en∥B ≤(1 + δtC
′′
ν,T )n∥e0∥B

+ (1 + (1 + δtC
′′
ν,T ) + (1 + δtC

′′
ν,T )2 + . . . + (1 + δtC

′′
ν,T )n−1)(δt)2C ′′′ν,T .

(107)

By the finite geometric series,

∥en∥B ≤ (1 + δtC
′′
ν,T )n∥e0∥B −

1− (1 + δtC
′′
ν,T )n

δtC ′′ν,T

(δt)2C ′′′ν,T (108)

= (1 + δtC
′′
ν,T )n∥e0∥B +

(1 + δtC
′′
ν,T )n − 1

C ′′ν,T

δtC
′′′
ν,T (109)

≤ (1 + δtC
′′
ν,T )n∥e0∥B + enδtC′′

ν,T − 1
C ′′ν,T

δtC
′′′
ν,T (110)

= (1 + δtC
′′
ν,T )n∥e0∥B + eT C′′

ν,T − 1
C ′′ν,T

δtC
′′′
ν,T . (111)

As the evolution of the matrix fields as well as of both schemes starts in the identity,
the initial error ∥e0∥B is 0. Thus,

∥Mex(T )−Meu(T )∥B = ∥en∥B ≤ δtC
(4)
ν,T , (112)

showing that the solution of the exponential discretization converges to the solution
of the Euler scheme for δt → 0.

Combining this with the convergence of the Euler scheme (78) gives

Mex(T )→M(T ) in O(δt) (113)

for arbitrary T > 0. Thus, the solution of the exponential discretization converges to
the continuous solution.

Decomposition property. Now, we can infer the decomposition property by
defining the difference between the exponential scheme and the analytical solution as

eδt,T,νid
(x) := M(x, T )−Mex(x, T ). (114)

and calculate

M(x, 2T ) = Mex(x, 2T ) + eδt,2T,νid
(x). (115)
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Inserting the definition of Mex in (83), we obtain

... =
2n−1∐
k=0

exp (δtνid (PMex (x, tk) x̄)) + eδt,2T,νid
(x) (116)

=
2n−1∐
k=n

exp (δtνid (PMex (x, tk) x̄))
n−1∐
k=0

exp (δtνid (PMex (x, tk) x̄)) + eδt,2T,νid
(x)

(117)
(∗)= Mex(PMex(x, T )x̄, T )Mex(x, T ) + eδt,2T,νid

(x) (118)
= (M(PMex(x, T )x̄, T )− eδt,T,νid

(PMex(x, T )x̄)) (M(x, T )− eδt,T,νid
(x))

+ eδt,2T,νid
(x) (119)

= M (PMex(x, T )x̄, T ) M (x, T )− eδt,T,νid
(PMex(x, T )x̄)M(x, T )

−M (PMex(x, T )x̄, T ) eδt,T,νid
(x) + eδt,T,νid

(PMex(x, T )x̄)eδt,T,νid
(x)

+ eδt,2T,νid
(x). (120)

The step in (∗) will be further explained below. As this equation for M(x, 2T ) holds
for all δt > 0, the error terms vanish for δt → 0. As further Mex(T ) is bounded for
arbitrarily small δt > 0, we obtain the claimed decomposition property:

M(x, 2T ) = lim
δt→0

M (PMex(x, T )x̄, T ) M (x, T ) (121)

= M (PM(x, T )x̄, T ) M (x, T ) , (122)

where the last equality follows from limδt→0 Mex(x, T ) = M(x, T ) and the continuity
of M . This concludes the proof of the theorem.

(∗): We further explain the steps in this equality. The equality

Mex(x, T ) =
n−1∐
k=0

exp (δtνid (PMex (x, tk) x̄)) (123)

holds by definition of the exponential scheme, see (83). We now show the equality

Mex(PMex(x, T )x̄, T ) =
2n−1∐
k=n

exp (δtνid (PMex (x, tk) x̄)) . (124)

From (83) with x = PMex(x, T )x̄, it follows

Mex(PMex(x, T )x̄, T ) =
n−1∐
k=0

exp
(

δtνid

(
PMex (PMex(x, T )x̄, tk) PMex(x, T )x̄

))
.

(125)
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The projection operator P and mapping ·̄ to homogeneous coordinates cancel:

. . . =
n−1∐
k=0

exp (δtνid (PMex (PMex(x, T )x̄, tk) Mex(x, T )x̄)) . (126)

Splitting the right-most factor from the matrix product, we obtain

. . . =
n−1∐
k=1

exp (δtνid (PMex (PMex(x, T )x̄, tk) Mex(x, T )x̄))

· exp (δtνid (PMex (PMex(x, T )x̄, t0) Mex(x, T )x̄)) . (127)

From the definition of the exponential scheme, it holds that Mex(·, t0) = id, see (82),
and the expression simplifies to

Mex(PMex(x, T )x̄, T ) =
n−1∐
k=1

exp (δtνid (PMex (PMex(x, T )x̄, tk) Mex(x, T )x̄))

· exp (δtνid (PMex(x, T )x̄)) . (128)

As tn = T , it holds

exp (δtνid (PMex(x, T )x̄)) = exp (δtνid (PMex(x, tn)x̄)) , (129)

which is precisely the right-most factor in (124). This shows that the right-most factors
in the products of (124) and (125) coincide. Iteratively applying the fact that each
factor in the exponential scheme (82) depends only on the (temporally) previous one,
we arrive at the claimed equality.
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Appendix A Hyperparameter Tuning Results

vector field fitting synthetic deformations inter-patient registration
method w0 lr sf w0 lr sf w0 lr sf
SVF [10] 4.85 0.017 0.009 1.1e-4 3.8e-5 0.053 15.18 0.004 0.006
SE(3) (ours) 4.12 0.007 0.006 2.8e-3 0.001 0.058 13.11 0.005 0.002
SIM(3) (ours) 4.89 0.009 0.017 2.8e-3 0.001 0.058 13.92 0.008 0.018

Table A1: Hyperparameters after tuning with the Optuna framework: SIREN initial
frequency scaling (w0), learning rate (lr), and scaling factor (sf); see Section 3.4.

We used the Optuna framework [54] for choosing the hyperparameters for the exper-
iments in Section 4. The results of the parameter tuning are presented in Table A1.
Additional information is presented in figures A1, A2, A3. The bar graphs on the left
show Optuna’s estimate of how strong the specific hyperparameter impacts the score
on the set of test image pairs. On the right are 2D projections of the score functions
with respect to different pairs of hyperparameters.
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Fig. A1: Hyperparameter for fitting 5 synthetically generated deformation fields
(Fig. 11). Parameters were optimized to minimize the RMSE between the given and
generated deformation fields.
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Fig. A2: Hyperparameter Tuning for registration with synthetic deformations
(Fig. 12). For SIM(3), hyperparameters were ultimately chosen the same as for SE(3),
as the automated search did not yield satisfactory results.
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Fig. A3: Hyperparameter tuning on 5 selected scull stripped volume pairs from the
OASIS dataset. Parameters were optimized to maximize the sum of the Dice scores
(Table 2).
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