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Abstract

In this thesis, we investigate multiple approaches for constructing quantum algo-
rithms with applications to image processing: Hybrid, fully universal, annealing-
based, and based on quantum time evolution.

First, we develop a variational quantum algorithm for the Ising Hamiltonian
ground-state problem which block-encodes the Ising Hamiltonian in a unitary
operator acting on a parameterized quantum state, the parameters of which are
optimized in a way to solve the problem using an outer classical optimization
routine. Experimentally, the algorithm outperforms the quantum approximate
optimization algorithm (QAOA) and challenges dedicated D-Wave annealers in
returning approximate solutions.

Second, we propose an iterative, fully universal quantum algorithm which uses
quantum amplitude amplification and does not require the classical outer loop.
This fully universal method guarantees that, after an optimal number of itera-
tions, a ground state of the Ising Hamiltonian is measured with the highest prob-
ability compared to other states.

Turning to a specific application in image processing, we formulate the rigid
point set registration problem as a quadratic unconstrained binary optimization
(QUBO) problem suitable for quantum annealers. Here, we consider a contin-
uous yet constrained objective function, optimizing over rotation matrices from
the special orthogonal group – a Lie group. Moreover, we solve the orthogonality
constraint and propose instead to optimize over the Lie algebra. In an iterative
process, we construct and solve QUBO problems to adjust the rotation param-
eters. We successfully deploy our method on D-Wave quantum annealers and
demonstrate its viability on several 2D and 3D point sets, improving the state-of-
the-art quantum approach for this problem.

Finally, we investigate quantum time evolution for solving parametric non-convex
image registration problems. We consider the existing quantum Hamiltonian
descent (QHD) algorithm, which is derived from the quantum path integral of
dynamical systems and its relation to the continuous time limit of classical gra-
dient descent methods. We classically simulate the time evolution of the QHD
Hamiltonian for a non-convex rigid image registration problem and find that the
method can effectively find globally optimal solutions.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung unterschiedlicher Ansätze zur Kon-
struktion von Quantenalgorithmen mit Anwendungen in der Bildverarbeitung:
Hybrid, im universellen Quantencomputingmodell, sowie basierend auf Quan-
tum Annealing und Quantum Time Evolution.

Zunächst wird ein variationeller Quantenalgorithmus für das Grundzustands-
problem des Ising-Hamiltonoperators vorgestellt. Der Hamiltonoperator wird
dabei mit Hilfe einer Blockdarstellung umgesetzt und auf einen parametrisierten
Quantenzustand angewandt, dessen Parameter in einer äußeren Schleife klas-
sisch optimiert werden. In den Experimenten übertrifft das Verfahren den Quan-
tum Approximate Optimization Algorithm (QAOA) bei der Suche nach Nähe-
rungslösungen und liegt gleichauf mit spezialisierten D-Wave-Annealern.

Weiterhin wird ein iterativer Algorithmus basierend auf dem universellen Mo-
dell des Quantencomputings vorgestellt, der auf Quantenamplitudenverstärkung
aufbaut und keine äußere, klassische Optimierungsschleife benötigt. Dieses voll-
ständig quantenbasierte Verfahren stellt sicher, dass nach einer optimalen Anzahl
an Iterationen der Grundzustand des Ising-Hamiltonoperators mit einer größe-
ren Wahrscheinlichkeit als alle anderen Zustände gemessen wird.

Als konkrete Anwendung in der Bildverarbeitung wird das Problem der star-
ren Punktwolkenregistrierung als quadratisches unbeschränktes binäres Opti-
mierungsproblem (QUBO) formuliert. Dabei wird ein beschränktes kontinuier-
liches Optimierungsproblem aufgestellt, das über der Menge der Rotationsma-
trizen der speziellen orthogonalen Gruppe – einer Lie-Gruppe – formuliert ist.
Um die Orthogonalitätsnebenbedingung umzusetzen, wird stattdessen über die
Lie-Algebra optimiert. Die Parameter der Rotationen werden anschließend ange-
passt, indem iterativ QUBO-Probleme konstruiert und gelöst werden. Das Ver-
fahren ist real umsetzbar auf D-Wave-Quantenannealern sowohl für 2D- als auch
für 3D-Datensätze und in der Praxis eine Verbesserung im Vergleich zu bisheri-
gen Quantenverfahren für dieses Problem.

Schließlich wird ein Ansatz basierend auf Quantum Time Evolution diskutiert,
mit dem Ziel, parametrische nicht-konvexe Bildregistrierungsprobleme zu lösen.
Der Ausgangspunkt ist das Quantum Hamiltonian Descent-Verfahren (QHD),
das durch das Pfadintegral der Quantenmechanik und dessen Verbindung zum
zeitkontinuierlichen Limit des klassischen Gradientenabstiegs motiviert ist. Ei-
ne klassische Simulation der Zustandsentwicklung des QHD-Hamiltonoperators
für ein nichtkonvexes starres Bildregistrierungsproblem zeigt, dass das Verfahren
effektiv global optimale Lösungen finden kann.
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Symbols & Abbreviations

Linear Algebra

i complex unit, i2 = −1.
H Hilbert space.
M matrix.
σ(M) set of eigenvalues of M.
ψ column vector ψ = (ψ1, . . . , ψn)

¦.
□

¦ transpose of □.
□ complex conjugate of □.
□

 Hermitian conjugate or adjoint of □.
[□, △] commutator of □ and △.
ï□,△ð inner product of □ and △.
Re(□) real part of complex number □.
Im(□) imaginary part of complex number □.

Quantum Computing

ℏ reduced Planck’s constant.
|ψð state-vector of a quantum system ψ, Ket.
ïψ| Hermitian conjugate or adjoint of |ψð, Bra.
ïψ|φð inner product of |ψð and |φð, Braket.
ïψ|M|φð inner product of |ψð and M |φð, also M

 |ψð and |φð.
|ψð ¹ |φð tensor product of |ψð and |φð, also |ψφð, |ψ, φð, or |ψð |φð.
I¹U

È |ψ, φð controlled-U
– i.e., I¹U |ψ, φð if ψ = 1 and I¹ I |ψ, φð otherwise.

ï□ð expectation of observable □.
∆(□) standard deviation of observable □.
U(θ) parameterized quantum circuit, or variational circuit.
[N ] set {0, 1, . . . , N − 1} for computational basis-states.

Numerical Optimization

f objective function to be optimized.
∇f gradient of f .
∇2f hessian of f .
∂
∂△

□ partial derivative of □ w.r.t. the variable △.

□
⋆ globally optimal solution of an optimization problem.
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Abbreviations

ADAM Adaptive Moment estimation.
AQC Adiabatic Quantum Computing.
CNOT Controlled-NOT.
COBYLA Constrained Optimization BY Linear Approximation.
CPU Central Processing Unit.
GD Gradient Descent.
ICT Iterative Classical Transformation Estimation.
IQT Iterative Quantum Transformation Estimation.
NBAA Non-Boolean Amplitude Amplification.
NISQ Noisy Intermediate Scale Quantum.
NOT NOT-quantum gate.
PM-NBAA Phase Matching-NBAA.
QA Quantum Approach for transformation estimation.
QAOA Quantum Approximate Optimization Algorithms.
QHD Quantum Hamiltonian Descent.
QP Quadratic Program.
QPU Quantum Processing Unit.
QUBO Quadratic Unconstrained Binary Optimization.
SPSA Simultaneous Perturbation Stochastic Approximation.
TE Transformation Estimation.
VQE Variational Quantum Eigensolver.
VQSVD Variational Quantum Singular Value Decomposition.
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CHAPTER 1

Introduction

In this thesis, we develop quantum computing algorithms applicable to image
processing problems. Emphasis is on formulating novel mathematical models
and optimization techniques suitable for quantum computation, specifically tar-
geting solutions for binary combinatorial and image registration problems.

1.1 Motivation

The advent of quantum computing offers a completely new computing paradigm.
Introduced in the early 1980s by Richard Feynman [1] for simulating nature,
quantum computers rely on quantum mechanical elements which obey quan-
tum mechanical laws. When quantum elements are combined to constitute a
quantum system, the dimension of the associated computational space expands
exponentially with the number of elements. Quantum systems can assume super-
position states, essentially existing in several pure states simultaneously, which
allows for computations to act on all states simultaneously. In addition to super-
position, quantum states can be entangled and can interfere, constructively or de-
structively, with oneself, fundamentally setting quantum computers apart from
classical analogues [2].

Quantum computing can be described by two computational models that dif-
fer in their functioning: The adiabatic quantum model [3] is best suited for op-
timization problems, typically cast in quadratic unconstrained binary optimiza-
tion form. Using quantum tunneling effects, this model can be used to find near-
optimal solutions of optimization problems and is a promising way for escap-
ing local minima that can trap classical gradient-based optimizers. The universal
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1.2. Applications and Scope

model of quantum computing, also referred to as the gate-based or circuit model,
is more flexible for modelling problems and can potentially implement any clas-
sical operation, as shown by Bennett [4]. For selected problems such as Shor’s
factoring [5] and Grover’s search [6] algorithms, strong theoretical convergence
properties and drastic speed-up of the universal quantum computing model over
classical counterparts have been proven.

With the release of commercial devices such as IBM universal quantum com-
puters [7] and D-Wave annealers [8], quantum computing is becoming reality.
However, currently available devices, labeled as noisy intermediate scale quantum
devices [9], are of relatively small size and still prone to noise and imperfect quan-
tum elements. In the era of noisy intermediate-scale devices, it is a challenging
task to find real-world applications of quantum computing. Hybrid quantum-
classical algorithms are being actively explored for obtaining practical quantum
supremacy.

1.2 Applications and Scope

Computer vision, and in particular image processing, abounds with challeng-
ing optimization problems, for which quantum computing could provide prac-
tical utility. Image processing problems are often non-convex, large-scale, and
may have combinatorial components. Some application examples are illustrated
in Figure 1.2.1.

Optimization.

In numerical optimization [10, 11], one seeks to numerically find, on a given fea-
sible set, a point that globally minimizes a certain real-valued function; said point
is called the minimizer. For differentiable functions, the minimizer is also a station-
ary point, i.e., a point where the gradient of the function vanishes. Classical ways
to find the minimizer leverage gradient information to search for a direction in
which the function value locally decreases. Only in rare cases where the function
is convex, this point can be found. In other cases, it is rather difficult to find the
global minimum and only local optimal solutions are found, see Figure 1.2.2a.
Gradient-free optimizers also exist, but are generally heuristics not necessarily
returning a stationary point. For combinatorial problems, it is impossible to use
gradient information without modifying the problem, as the feasible set is dis-
crete and the function is non-differentiable. Furthermore, the search space di-
mension of combinatorial problems often grows exponentially with the problem
size, making them particularly difficult to solve.

Quantum optimization.

Quantum computation [12, 13] operates on a quantum system that assumes dif-
ferent basis states with certain probabilities once measured. A quantum probability
is the squared value of a certain complex number called amplitude. In general, one

2



1. Introduction

Figure 1.2.1: Example applications of image processing. (Top row) Image registration
illustrated as a problem of aligning two images such that they overlap with minimal cost.
(Bottom row) Image segmentation illustrated as a problem of deciding for each pixel of
a random lattice, if the pixel belongs to the image foreground or background.

can only manipulate the amplitude, thus the probability of finding the system in
a particular state. Optimizing with quantum computers typically means to bring
the quantum system into a state that is, with high probability, the state encod-
ing the solution of an optimization problem, and into which the quantum system
collapses when it is observed. Quantum algorithms are developed in this direc-
tion [14]:

• Adiabatic quantum methods assume a Hamiltonian whose ground state en-
codes a solution of an optimization problem. Optimization, using quan-
tum tunneling effects, see Figure 1.2.2b, is achieved by performing an adia-
batic evolution of the quantum system from the known and easily-prepared
ground state of an initial Hamiltonian to that of the problem Hamiltonian.

• Amplitude amplification methods assume a quantum oracle capable of eval-
uating the objective function on a given superposition state of all feasible
solutions. Subsequently, they make the amplitudes of non-optimal states
destructively interfere, while those of the solutions constructively interfere.

• Variational methods are hybrid quantum-classical methods taking as input
problem data, a parameterized quantum ansatz and a corresponding objec-
tive function. Then, the parameterized quantum state is measured in some
basis to evaluate the objective function and the parameters of the ansatz are
classically updated to optimize over the objective function.

3



1.2. Applications and Scope

(a) Gradient descent. (b) Quantum tunneling.

Figure 1.2.2: Classical gradient descent vs. quantum tunneling. (a) Classical gradient
descent steps model a particle navigating the optimization problem’s energy landscape,
moving towards a local minimum. (b) In quantum mechanics, the optimization landscape
represents the energy associated with the state of the quantum system. The quantum
element, exhibiting wave-particle duality, can tunnel through energy barriers, enabling
exploration of classically prohibited paths to reach a minimal energy state.

Other recent quantum methods, such as quantum Hamiltonian descent [15], build
on Feynman’s quantum path integral theory [16] and completely rethink gradient-
based optimizers. While in classical gradient-based optimization the gradient
dictates the path towards the solution, in quantum computing, quantum ele-
ments inherently can take every possible direction. This allows to explore clas-
sically prohibited directions to find a near-optimal solution of the optimization
problem.

Digital Image Processing.

Digital image processing refers to the manipulation of images by means of a com-
puter [17, 18]. Typical tasks involve processing image data into other image data,
such as segmentation, or extracting higher-level information from images, such
as classification.

The task of image segmentation [19] consists in deciding, for each pixel of the im-
age, to which of a given set of segments it should be assigned. Image segments
typically represent semantic objects in the image; these could be foreground and
background, in which case the segmentation separates the image into foreground
and background. A segment could also designate an object in the image, so that
the segmentation classifies each pixel of the image to belong to one object. In any
case, image segmentation is a combinatorial optimization problem, which can be
regarded as a problem of assigning labels to the nodes of a given graph with min-
imal cost. Figure 1.2.3 shows an exemplary application of the variational hybrid
quantum-classical algorithm developed in this thesis for the binary case.

Another interesting image processing problem is that of image registration [20].
In this context, given two images, the goal is to find a reasonable deformation
of the pixel coordinates of one image in a way to align this image to the other.
When formulated as an optimization problem, the image registration problem

4
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Figure 1.2.3: Overview of our hybrid quantum-classical method for solving a binary
combinatorial problem. The problem is formulated as the problem of classifying the nodes
of a weighted graph so that the overall cost is minimal. (Left) The input graph including
nodes and edge weights. (Middle) A hybrid quantum-classical loop that optimizes a
set of rotation angles ¹ in order to drive a parameterized ansatz into the optimal state.
(Right) Once found, the optimal rotation parameters prepare the quantum system into
a state whose measurement delivers a locally optimal node classification. The method is
discussed in detail in Chapter 4.

in often a non-convex problem. The quality of registration results obtained, for
instance, with gradient-based optimizers is significantly impacted by the initial
alignment. To address this, a common practice involves an initial landmark-
based pre-registration step, where the registration is achieved by aligning cor-
responding landmarks or points in the two images. We introduce an iterative
quantum approach to register two sets of points. Our results are displayed in Fig-
ure 1.2.4.

1.3 Contribution and Outline

This thesis explores several quantum computing algorithms for dealing with im-
age processing problems. We develop adiabatic, universal, as well as hybrid
classical-quantum algorithms for solving combinatorial and registration prob-
lems in image processing. We also explore quantum-inspired algorithms, by
means of quantum path integrals for non-convex image processing problems.
Next, we outline and summarize our contribution. Related literature for each
topic is discussed within the respective section. 1

In Chapter 2, we provide a compact review of the fundamental concepts of quan-
tum computations. The quantum universal and adiabatic models are presented

1As parts of this thesis have been published in peer-reviewed journals and conferences, we also
provide for each section, if applicable, the related author’s publication. For each publica-
tion, NKM conceived and developed the idea, performed the implementation and wrote the
manuscript. FM directed the experiments, and wrote the manuscript. JL supervised the work
and proof-read the manuscript.
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1.3. Contribution and Outline

(a) 2D. (b) 3D.

Figure 1.2.4: Iterative quantum approach for transformation estimation. (a) Registration
results on 2D point sets (MNIST [21] and Lena [22]). (b) Registration results on 3D
point sets (Stanford bunny [23] and completion3D [24]). Blue points represent reference
points and olive points represent template points. The initial alignment is shown on the
left and the result of the registration on the right. See Chapter 6 for a full discussion.

in detail, revisiting gates for the universal model and the adiabatic theorem for
the adiabatic model. Additionally, a brief overview on noisy intermediates de-
vices is provided.

In Chapter 3, we review how to optimize parameterized quantum circuits for
solving problems. To this end, some known classical optimizers, gradient-based
and gradient-free, are presented. We also introduce the Ising problem, a combi-
natorial problem with multiple applications in image processing [25], as well as
the related optimization using adiabatic quantum computing.

In Chapter 4, we propose a new algorithm for solving the Ising problem. The
approach hinges on a new, easy to implement and low-depth variational circuit
that effectively encodes the Ising problem on quantum hardware. We derive an
optimization routine based on gradient descent for the proposed variational cir-
cuit in order to drive the quantum system towards the solution of the problem.
Experimentally, we validate the novel algorithm and benchmark it against the
state-of-the-art gate-based QAOA [26] model, and specialized D-Wave anneal-
ers.

Related author’s publication:

• Kuete Meli, N., Mannel, F., and Lellmann, J. “A universal quantum algo-
rithm for weighted maximum cut and Ising problems”, Quantum Inf Process
22, 279 (July 2023). https://doi.org/10.1007/s11128-023-04025-x.

In Chapter 5, we approach the Ising problem from a purely universal quantum
perspective. We use iterative quantum amplitude amplification techniques to

6
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1. Introduction

boost the amplitude of the quantum state encoding the solution of the problem.
To this end, an existing non-Boolean amplitude amplification algorithm [27, 28]
is employed and modified to achieve better results, i.e, to measure the optimal
state with a higher probability. We mathematically analyze the new algorithm
and find that, under some assumptions, it provably boosts the amplitude of the
solution more than the original algorithm does.

In Chapter 6, we present a new iterative method for estimating rigid transfor-
mations from point sets using adiabatic quantum computation [29]. The method
relies on an adaptive scheme to solve the problem to high precision, and does not
suffer from inconsistent rotation matrices. Experimentally, the proposed method
performs robustly on 2D and 3D data sets and even with high outlier ratio.

Related author’s publication:

• Kuete Meli, N., Mannel, F., and Lellmann, J. “An iterative quantum ap-
proach for transformation estimation from point sets”, In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 529-537
(Juli 2022). https://doi.org/10.1109/CVPR52688.2022.00061.

In Chapter 7, we explore further quantum optimization perspectives applicable
to image processing problems. Specially, the existing quantum gradient descent
algorithm [15] is presented, classically simulated and tested on a rigid image reg-
istration problem. While not yet rigorously developed, we find that the algorithm
has great potential for finding a globally optimal solution.

In Chapter 8, we conclude the thesis. We summarize the main findings and dis-
cuss open questions and promising directions of further research.
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CHAPTER 2

Preliminaries

Quantum computing is a way of thinking physically about computation. Quan-
tum computation takes place in a quantum mechanical system made up of quan-
tum particles. These particles are mathematical objects with certain specific prop-
erties.

This chapter aims to provide a self-contained introduction to quantum comput-
ing and sets up the notation used in the thesis. Furthermore, we will see how
quantum computing replaces even the most basic classical operations with ones
involving so-called quantum bits. We will see how to encode and manipulate
quantum information for problem solving, unlocking new and exciting capa-
bilities for information processing. The definitions and concepts of this chapter
mostly follow [12, 13].

2.1 Quantum Bit

To gain some intuition of the mathematical modelling of a quantum system, we
consider the simplest possible quantum system known as quantum bit or qubit.
This one-particle system has two potential energy states. Conventionally denoted
by |0ð and |1ð, the two basis states are orthogonal unit vectors in R

2:

|0ð :=
(
1
0

)

and |1ð :=
(
0
1

)

. (1)

The states |0ð and |1ð are eigenstates or stationary states of the system. Until
it is measured, the qubit is in a complex-valued linear combination of its basis
states. Just as the bit in classical computation, the qubit is the fundamental unit
of quantum computation.

8



2. Preliminaries

Definition 2.1.1 (Quantum bit)

A quantum bit, or qubit, is a one-particle quantum system whose state is ex-
pressed as a superposition, i.e., linear combination, of the basis states |0ð and
|1ð,

|Èð = ³ |0ð+ ´ |1ð , (2)

with |³|2 + |´|2 = 1, ³, ´ ∈ C.

The numbers ³ and ´ are called amplitudes of the basis states. When we observe
a qubit, we only acquire much more restricted information about the quantum
state: We either get |0ð, with probability |³|2, or |1ð, with probability |´|2. An
example of a superposition state is the uniform superposition state which is in
both |0ð and |1ð with the same probability |³|2 = |´|2 = 1/2. It is denoted as
|+ð := 1√

2
(|0ð+ |1ð).

There are two common ways of geometrically thinking about a qubit |Èð: The
first one is to simply represent the qubit as a unit-length complex vector

|Èð =
(
³
´

)

∈ C
2. (3)

The other way, that will later help to understand operations on qubits more intu-
itively, is to represent it in the 3D real space: Due to the normalization condition
|³|2 + |´|2 = 1, each qubit can be written as

|Èð = eiÉ
(

cos
µ

2
|0ð+ eiϕ sin

µ

2
|1ð

)

(4)

with angles µ ∈ [0, Ã] and É, ϕ ∈ [0, 2Ã]. This representation, called Bloch-sphere
representation of the qubit |Èð, translates into a unit vector called the Bloch vector
Èbloch = (cosϕ sin µ, sinϕ sin µ, cos µ)¦ ∈ R3 and can be visualized as a point on the
3D unit-sphere as shown in Figure 2.1.1.

2.2 Postulates of Quantum Mechanics

While quantum mechanics exhibits surprising and sometimes unintuitive effects,
its mathematical foundation rests on a relatively small number of basic postu-
lates.

2.2.1 State space

Postulate 2.2.1 (State space)

The state of a quantum system at any time t ∈ [0, T ], T ∈ N, is described by
a unit-norm vector |È(t)ð = ³(t) |0ð + ´(t) |1ð called state vector and lives in a
Hilbert spaceH.

9
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ϕ

µ

x⃗

y⃗

z⃗ = |0ð

−z⃗ = |1ð

|Èð

Figure 2.1.1: Bloch sphere representation of a qubit. The qubit |Èð = ³ |0ð+ ´ |1ð can be
expressed as a unit vector in R3. Two angles µ ∈ [0, Ã] and ϕ ∈ [0, 2Ã] fully describe the
qubit in the basis spanned by the vectors x⃗, y⃗ and z⃗.

Definition 2.2.1 (Hilbert space)

Let H be a vector space and F a scalar field. A mapping ï·|·ð : H×H → F is an
inner product if

1. ∀ È, ϕ ∈ H it holds ïÈ|ϕð = ïϕ|Èð,

2. ∀ ¼ ∈ F and È, ϕ, ϕ′ ∈ H it holds ïÈ|¼ϕ+ ϕ′ð = ¼ ïÈ|ϕð+ ïÈ|ϕ′ð,

3. ∀ È ∈ H it holds ïÈ|Èð g 0, and ïÈ|Èð = 0 if and only if È = 0.

A Hilbert space is a vector space with inner product.

In practice, for H = Cn and F = C, the mapping ï·|·ð : Cn × Cn → C, de-
fined by ïÈ|ϕð :=

∑n
i=1 Èiϕi, is an inner product, making the complex space Cn

a valid Hilbert space for quantum computation. The norm of È is calculated by

the canonical norm as ∥È∥ =
√

ïÈ|Èð. The squared magnitudes of the coefficients
³(t) and ´(t) of the qubit represent the probability of the system of being in the
basis states |0ð and |1ð, yielding the normalization ïÈ|Èð = |³(t)|2 + |´(t)|2 = 1 if
|È(t)ð is a state vector.

We will reserve the Dirac notation |·ð (read Ket ·) only for state vectors. The
notation ï·| (read Bra ·) denotes the adjoint – Hermitian conjugate – of |·ð, and
ï·|·ð (read Braket) the inner product. For ease of reading flow and if it is clear
from the context, we will sometimes omit the argument and write |Èð instead of
|È(t)ð.

2.2.2 Evolution

Quantum computation is performed by transforming the state vector of the quan-
tum system from an initial state to a desired state, a state which solves a problem.
The evolution is framed by following postulate:

10
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Postulate 2.2.2 (Evolution)

The evolution of a closed quantum system at time t ∈ [0, T ] is described by a
unitary operator U(t). The state space |È(t)ð of the system at time t is related to
the state |È(0)ð at time 0 by

|È(t)ð = U(t) |È(0)ð . (5)

Moreover, at every point in time, the evolution obeys Schrödinger’s equation,

iℏ
d

dt
|È(t)ð = H(t) |È(t)ð , (6)

where i is the complex unit, ℏ is a physical constant known as (reduced) Planck’s
constant, and H is a Hermitian operator known as the system-driven Hamilto-
nian. The solution of the Schrödinger equation defines a time-dependent unitary
operator U(t) that transforms the state |Èð into the state |È(t)ð.

Definition 2.2.2 (Hermitian, normal, unitary, and diagonalizable operators)

Let A be a linear operator, A the complex adjoint of A, and I the identity oper-
ator on a Hilbert spaceH. Then,

• A is Hermitian :ôA
 = A,

• A is normal :ôA
 
A = AA

 ,

• A is unitary :ôA
 
A = AA

 = I.

The operator A is diagonalizable if it admits a decomposition A =
∑

x Ãx |xð ïx|
called spectral decomposition, where the vectors |xð ∈ H form an orthonormal
system of eigenvectors to eigenvalues Ãx ∈ C of A. The set Ã(A) denotes the set
of all eigenvalues of A.

If we know or provide either the (time-dependent) unitary U or the system-
driven Hamiltonian H, then, we fully understand or can control the system dy-
namic. In adiabatic quantum computing, to solve optimization problems, one
typically chooses H(t) as an evolution over the time t from an initial Hamilto-
nian H(0) to a problem Hamiltonian H(T ). In universal quantum computing, it
is more common to think in terms of the unitary U(t) that transforms the state
vector of the system.

It is important for the operator U acting on the system to be unitary, since then

∥ |È(t)ð ∥2 = ∥U(t) |È(0)ð ∥2 = ïÈ(0)|U(t) U(t)|È(0)ð = ïÈ(0)|È(0)ð = 1, (7)

i.e., the norm of the state vector is preserved, the operation is reversible with no
information loss. A unitary operator acting on a state vector is called quantum
gate.
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2.2.3 Measurement

Measurement allows to extract classical information from qubits. It is the only
non-reversible operation in quantum computation. Upon measurement, the qubit
loses its superposition property and collapses to one of its eigenstates:

Postulate 2.2.3 (Measurement)

The measurement of a quantum system is carried out by a family {Mm, m ∈M}
of measurement operators fulfilling the relation

∑

mM
 
mMm = I. The setM is

the set of all possible measurement outcomes. For a system prepared in the state
|Èð, the probability of observing the outcome m upon measurement is

p(m) = ïÈ|M 
mMm|Èð , (8)

and the state of the system immediately after observing outcome m is

|Èmð =
Mm |Èð

√

ïÈ|M 
mMm|Èð

. (9)

If, for some Hermitian operator M =
∑

mmPm, a so-called observable, the op-
erators Mm are set to Mm = Pm, where Pm are orthogonal projectors in the
eigenspaces to eigenvalues m of M, andM is set toM = Ã(M), then the mea-
surement is said to be projective.

Definition 2.2.3 (Projector)

A linear transformation P onH is a projector if PP = P.

Example : We want to perform a measurement on a quantum system prepared in the
uniform superposition |+ð = 1√

2
(|0ð+ |1ð):

1. Using the operators M0 = |0ð ï0| resp. M1 = |1ð ï1|, it is easy to verify the identity

M
 
0M0 + M

 
1M1 = I. Then, the probability of observing the outcome 0 resp. 1 at

the measurement is p(0) = ï+|0ð ï0|0ð ï0|+ð = ∥ ï0|+ð ∥2 = 1/2 resp. p(1) = 1/2 and
the system immediately after the measurement is in the state |0ð resp. |1ð.

2. In observable notation, suppose that we want to measure the observable

Z :=
(
1 0
0 −1

)

. (10)

The matrix Z has the spectral decomposition Z = |0ð ï0|− |1ð ï1|. We therefore reuse
the operators M0 and M1 from above as projectors to compute the probabilities of
observing the outcomes 1 and −1, the eigenvalues of Z. Unsurprisingly, we get
the same result p(1) = 1/2 and p(−1) = 1/2 as we used the same measurement
operators. The only thing that changes is the interpretation of the measurement
outcome.

As the measurement outcome is a random variable, we can introduce some sta-
tistical definitions on the measurement observable.
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2. Preliminaries

Definition 2.2.4 (Expectation and standard deviation of measurement)

Let |Èð be the state vector of a quantum system and M a measurement operator.
Then,

• the expectation value of the measurement is

ïMð := ïÈ|M|Èð =
∑

m

mp(m), (11)

• and its standard deviation is

∆(M) :=

√

ïM2ð − ïMð2. (12)

In particular, to refer back to the Bloch sphere in Figure 2.1.1, the expectation
value of an observable on a system in the state vector |Èð = ³ |0ð + ´ |1ð cor-
responds to the Fourier coefficient of the Bloch vector of |Èð in the direction of
the axis supporting the eigenvectors of the observable. Specially, measuring with
the operators M0 = |0ð ï0| and M1 = |1ð ï1| as in the example above is known
as measuring in the computational basis and the states |0ð and |1ð are known as
computation basis states. The expectation ïZð = |³|2 − |´|2 is the z-coordinate of
Èbloch. Measuring in a different basis amounts to projecting the state vector on
the corresponding axis.

Most of the commercial devices [7, 8] only measure in the computational basis,
i.e., only measure the observable Z. Hence, measuring an arbitrary observable M

involves finding a unitary transformation U such that Z = UMU
 . Then,

ïMð = ïÈ|M|Èð = ïÈ|U 
UMU

 
U|Èð = ïÈ′|Z|È′ð (13)

and measuring M on the state |Èð is equivalent to measuring M on the state |È′ð.

To approximate the expectation ïMð = ïÈ|M|Èð, one is experimentally often
forced to prepare several copies of the system in the state |Èð, to perform the
measurement on each copy, and to aggregate the measurement outcomes. A sin-
gle measurement on a copy of the system is called a shot or a read. A pseudo-
code of the measurement process as done in the practice is summarized in Algo-
rithm 2.2.1.
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Algorithm 2.2.1 (Measurement of operators)

Input: Quantum state |Èð and measurement operator M = UZU
 .

Output: Measurement expectation value ïÈ|M|Èð =
∑

m∈Mm · p(m).

Initialize p = (0, . . . , 0).
for k = 1, 2, . . . ,num_shots do

Prepare the system in the state |È′ð = U |Èð.
|Èmð ← State after measurement of |È′ð in the computational basis.
p[m]← p[m] + 1

num_shots .
end for
Return: ïÈ|M|Èð =

∑

m∈Mm · p(m).

An important remark on measurement is that, independently of the basis em-
ployed, it cannot distinguish between two state vectors that only differ by a
global phase. That is, for some ¹ ∈ R and a state |ϕð = ei¹ |Èð, we have

ïMð = ïÈ|M|Èð = ïÈ|e−i¹Mei¹|Èð = ïϕ|M|ϕð , (14)

so that the global phase information plays no role in the measurement.

2.2.4 Composite system

The above postulates relate to single-particle quantum systems. To make calcula-
tions of practical interest, one needs to compose multiple single-particle systems.
The last postulate extends the notion of state space from single to composite sys-
tems:

Postulate 2.2.4 (Composite system)

The state space of an n-particle quantum system, n ∈ N, is a tensor product
H = ¹ni=1H(i) of the state spaces H(i), i = 1, . . . , n, of the one-particle systems.
The state vector

|È(t)ð = ¹ni=1 |È(i)(t)ð =
∑

q∈{|0ð,|1ð}⊗n

³q(t) |qð (15)

is the tensor product of the n single state vectors.

Similarly to state vectors, operations on composite quantum systems are often
achieved by combining operators on single systems using the tensor product. As
an example, considering a two qubit state vector |Èð ¹ |ϕð, one is interested in
measuring the second qubit |ϕð. The measurement operator family for this reads
{I¹Mm,m ∈M}, i.e, a tensor product of the identity matrix and measurement
operators for single qubits. In matrix representation, the tensor product turns
into the Kronecker product:

14
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Definition 2.2.5 (Kronecker product)

Let A and B be two matrices of dimensions k × l and m × n. The Kronecker
product of A and B is the km× ln block matrix

A¹B :=





A11B · · · A1lB

...
. . .

...
Ak1B · · · AklB



 . (16)

We will circumstantially adopt the notations |Èϕð, |È, ϕð, and |Èð |ϕð to designate
the tensor product |Èð ¹ |ϕð of the two state vectors |Èð and |ϕð. Also, when deal-
ing with computational basis states {|0ð , |1ð}¹n, it will be convenient to consider,
instead of binary (bit) strings, their decimal representations. As an example, the
state

|11ð = |1ð ¹ |1ð =
(
0
1

)

¹
(
0
1

)

=




0
(
0
1

)

1
(
0
1

)



 =





0
0
0
1



 (17)

will simply be abbreviated as |3ð, as 112 in basis 2 is 310 in basis 10.

We see that if H(i) = C2 for i = 1, . . . , n, then state space of the composite system
H = (C2)¹n = C2n grows exponentially with n. This capacity of quantum com-
puters to store information with exponentially fewer resources is integral to a
potential quantum advantage over classical computing. Moreover, the capability
of a qubit of being in superposition is one of the core properties of quantum com-
putation because it allows for a form of high parallelism. In fact, when applied
to the system state, a single linear mapping can simultaneously act on the ampli-
tudes of all basis states. This sets quantum computers apart from their classical
analogues, which can only perform sequential calculations [2].

There is an exception to Postulate 2.2.4 known as entanglement:

Definition 2.2.6 (Entanglement)

An entangled quantum state |Èð is a state vector that cannot be written as the
tensor product |að ¹ |bð of any two single qubit states |að and |bð, or more.

Entanglement is one of the most interesting and intriguing concepts of quantum
computing and has no classical analog.

Example : Examples of entangled states include the well-known Bell states

|´abð :=
|0, bð+ (−1)a |1, 1− bð√

2
, (18)

with a, b ∈ {0, 1}. As a special case, one cannot find single-qubits states whose tensor
product gives the Bell |´00ð = 1√

2
(|00ð+ |11ð).
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I :=
(
1 0
0 1

)

Identity gate

X :=
(
0 1
1 0

)

Pauli X-gate

Y :=
(
0 −i
i 0

)

Pauli Y-gate

Z :=
(
1 0
0 −1

)

Pauli Z-gate

H := 1√
2

(
1 1
1 −1

)

Hadamard gate

S :=
(
1 0
0 i

)

S-gate

Table 1: Examples of non-parametric single qubits quantum gates.

2.3 Quantum Gates and Operations

Quantum gates are impulses applied to a quantum system, taking it from one
state into another. Mathematically, they are expressed as unitary operators acting
on state vectors. Quantum gates can be classified into single-, composite-, multi-
and parameterized gates.

2.3.1 Single-Qubit Quantum Gates

A single qubit quantum gate acts on a single qubit, i.e., on the state vector of a one-
particle system. Some of the most-used single qubit gates are listed in Table 1.
They act on basis state qubits as follows:

I |0ð = |0ð and I |1ð = |1ð (19)

X |0ð = |1ð and X |1ð = |0ð (20)

Y |0ð = −i |1ð and Y |1ð = i |0ð (21)

Z |0ð = |0ð and Z |1ð = − |1ð (22)

H |0ð = |+ð = 1√
2
(|0ð+ |1ð) and H |1ð = |−ð = 1√

2
(|0ð − |1ð) (23)

S |0ð = |0ð and S |1ð = i |1ð . (24)

The identity gate is essentially a “no-operation” and particularly useful when
composing operators. The Pauli-gates are named after Wolfgang Pauli: The Pauli
X-gate is a NOT-gate. The Pauli Y-gate acts as a phase gate in addition to flipping
the qubits. The Pauli Z-gate changes the phase of the qubit only if it is in the
state |1ð. Of particular interest is the Hadamard gate. Applied to the basis states,
the Hadamard gate creates perfect superposition states. Lastly, the S-gate is a
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phase gate that changes the phase of the qubit to i if it is in the state |1ð, and does
nothing otherwise.

2.3.2 Composition of Single Qubit-Gates

The matrix representation of several single qubit gates is, just as composite sys-
tems, typically constructed by composing unitary matrices of single gates using
the tensor product. A great representative is the Hadamard gate. On two qubits,
the Hadamard gate reads

H
¹2 = H¹H =

1

2





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



 . (25)

On n qubits in the |0ð state, the Hadamard gate creates the perfect superposition
n-qubits state vector:

|+ð¹n := H
¹n |0ð¹n =

1√
2n

2n−1∑

q=0

|qð . (26)

2.3.3 Multi-qubit quantum gates

Multi-qubit quantum gates are those whose inputs are more than one qubit. A
special case of multi-qubits gates are controlled gates. These are gates that act on
target qubits conditionally on the state of some control qubits. As an example,
for a two qubits system in the state |È, ϕð, we would like to apply the unitary

U :=
(
u00 u01
u10 u11

)

(27)

on the second qubit if and only if the first qubit is the |1ð state. The controlled-U
gate for this reads

cU =





1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11



 . (28)

As one can see, controlled gates cannot be expressed as a Kronecker product of
single independent quantum gates. To simplify the writing, we will adopt the
notation cU |È, ϕð = I ¹ U

È |È, ϕð to indicate that we apply I ¹ U to |È, ϕð if
È = 1 and the identity I¹I otherwise. Controlled gates are usually used to create
entangled states. The case U = X is very common and is called the CNOT gate.

2.3.4 Parametric Quantum Gates

The above presented gates are non-parametric gates. Of particular interest for
optimization using near-term quantum algorithms are parametric quantum gates.
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Rx(¹) :=

(
cos ¹

2
−i · sin ¹

2

−i · sin ¹
2

cos ¹
2

)

Rx rotation gate

RY (¹) :=

(
cos ¹

2
− sin ¹

2

sin ¹
2

cos ¹
2

)

Ry rotation gate

Rz(¹) :=

(

e−i
θ

2 0

0 ei
θ

2

)

Rz rotation gate

Ph(¹) :=

(
1 0
0 ei¹

)

Phase gate

Table 2: Examples of parametric single quantum gates.

These gates are parameterized by a set of modifiable variables, typically consid-
ered as angles. The standard form of 2× 2 parametric gate is given by

U(¹, ϕ, ¼) :=

(
cos( ¹

2
) e−i¼ sin( ¹

2
)

e−iϕ sin( ¹
2
) e−i(ϕ+¼) cos( ¹

2
)

)

(29)

with ¹ ∈ [0, Ã] and ¼, ϕ ∈ [0, 2Ã]. Typical representatives for this group are given
in Table 2. Up to global phase factors, all non-parametric 2 × 2 gates are special
cases of this parametric U gate. The Pauli X-gate, for example, can be expressed
as Rx(Ã) = i ·U(Ã, 0, 0).

2.3.5 Quantum Gates in the Bloch Sphere

Quantum gates are unitary and norm-preserving operators, just as rotation ma-
trices.

Lemma 2.3.1 (Quantum gates as 3D rotations, based on [12, Exercise 4.8])

Any unitary transformation U of a single qubit state vector can be expressed as

U = ei³ ·Rn⃗(¹), (30)

Rn⃗(¹) : = cos(¹/2)I− i sin(¹/2)(nx ·X+ ny ·Y + nz · Z), (31)

and can be seen, up to a global phase factor, as a rotation in the 3D real space of
the Bloch sphere by the angle ¹ ∈ R and about the axis n⃗ = (nx, ny, nz)

¦ ∈ R3,
with ∥n∥2 = 1.

Proof : The operator U is unitary and diagonalizable, hence admits the decomposition

U = ΨΣΨ (32)

where Ψ ∈ C2×2 is a unitary matrix comprising column-wise the eigenvectors of U and
Σ = diag([Ã1, Ã2]) ∈ C

2×2 a matrix comprising its eigenvalues. Since U is unitary, its
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eigenvectors are complex numbers with unit modulus, hence there exists a real matrix

Λ = diag([¼1, ¼2]) ∈ R
2×2 such that Σ = ei·¼, yielding U = ei·ÈΛÈ

 

.

We express ΨΛΨ ∈ C
2×2 in the basis {I,X,Y,Z}. These matrices, i.e., the identity

together with Pauli matrices, form a basis of C2×2. Since the matrix Λ is real, there is a
real value v0 ∈ R and a real vector v = (vx, vy, vz)

¦ ∈ R
3 such that

ΨΛΨ = v0 · I+ vx ·X+ vy ·Y + vz · Z, (33)

and
U = ei·(v0·I)ei·(vx·X+vy·Y+vz·Z). (34)

By setting ³ = v0, ¹ = −2∥v∥, and n = −2
¹v, we arrive at

U = ei·³ e−i
¹

2
·(nx·X+ny·Y+nz·Z)

︸ ︷︷ ︸

:=Rn⃗(¹)

. (35)

Lastly, let A := nx ·X+ ny ·Y + nz · Z be the matrix operator in Rn⃗(¹). The matrix A is
Hermitian and unitary, yielding A

2 = I. By matrix exponentiation, we have

exp(i¹A/2) =

∞∑

k=0

(i¹A/2)k

k!
(36)

=

∞∑

k=0

1

(2k)!
(i¹A/2)2k +

∞∑

k=0

1

(2k + 1)!
(i¹A/2)2k+1 (37)

=

∞∑

k=0

1

(2k)!
(i¹/2)2kA2k +

∞∑

k=0

1

(2k + 1)!
(i¹/2)2k+1

A
2k+1 (38)

=

∞∑

k=0

(−1)k
(2k)!

(¹/2)2k I+ i

∞∑

k=0

(−1)k
(2k + 1)!

(¹/2)2k+1
A (39)

= cos(¹/2)I+ i sin(¹/2)A. (40)

Substituting this back into Rn⃗(¹) from Equation (35), we get

Rn⃗(¹) = cos(¹/2)I− i sin(¹/2)(nx ·X+ ny ·Y + nz · Z). (41)

The matrixRn⃗(¹) is a special unitary matrix and as such in correspondence with a spacial
rotation matrix in R

3, namely the rotation about the angle ¹ ∈ R and axis n ∈ R
3, with

∥n∥2 = 1. The global phase ei·³ is ignored in the measurement. This concludes the proof.

Example : For the Hadamard gate, it holds ¹ = −Ã and n =
√
2
2 (1, 0, 1)¦.

2.4 Universal Quantum Computing
Universal quantum computing is an abstract representation of a quantum Turing
machine [30].

Conceptually, a Turing machine, as proposed by Alan Turing in 1937 [31], is a
simple and mathematical abstraction of what can be computed. It models a ma-
chine that mechanically operates on a tape. On that tape are symbols from a
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finite alphabet that the machine can read and write, one at a time, using a tape
head and only a small set of simple universal operations like “If the symbol in
state 17 is 0, write 1 and move to state 18”. Despite its simplicity, a famous thesis
known as Church-Turing [32] thesis states that any function on natural numbers
can effectively be computed on the universal Turing machine, and conversely
that every function that is un-computable on the Turing machine is considered
to be un-computable. This minimalist functioning of Turing machines unfortu-
nately make them limited in practice. Modern classical computers are based on
the Random Access Memory (RAM) model that is computationally equivalent to
the Turing model, but allows accessing any variable in memory.

Quantum computing started from an article by Feynman in 1982 [1], in which he
explained that a classical computer would be incapable of simulating complex
quantum physics, and that the latter should better be simulated by computers
of the same nature, i.e., quantum computers. In 1985, David Deutsch [33] firstly
investigated a quantum version of the Turing machine. In this early represen-
tation, a quantum Turing machine is a machine capable of performing quantum
operations that can be efficiently described by classical Turing machine computa-
tions. In 1989, Deutsch [31, 34] matured the idea and introduced universal quan-
tum circuits as a family of simple operations or gates, together with quantum
‘unit wires’, and adequate for constructing networks with any possible quantum
computational property. Indeed, it is proven that any quantum gate can be de-
composed into a finite sequence of gates acting only on a small number of qubits.
Those finite sets of basis gates are so-called universal quantum gates. Example sets
of universal gates for quantum computation, c.f. [35], include

{Rx(¹), Ry(¹), Rz(¹), Ph(¹),CNOT} (42)

or
{H,S, Ph(Ã/4),CNOT} . (43)

This quantum circuit model is the currently adopted general conception of uni-
versal quantum computing. As described in the previous section, quantum com-
puters are powerful with exponentially more states than classical computers and
capable, due to superposition and linearity of quantum gates, of accessing all the
states at once.

While powerful, quantum computers are still a distance away from being easily
applicable to solving practical problems. Often, quantum computers still need to
be paired and aided by classical ones in order to be effective in problem solving.
In addition to that, a universal quantum computer will be assumed to minimally
have the following requirements due to DiVincenzo in 1993 [36]:

• It should operate on a suitable Hilbert space, whose dimension corresponds
to the degrees of freedom required to hold data and perform computation.
This Hilbert space should be “enumerable”, i.e., should be composed of a
finite and known number n of qubits.
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Qubit 1 H

Qubit 2 Ry(¹)

U

Register H
¹3

Z
¹3

Figure 2.4.1: A circuit diagram with five qubits and diverse types of quantum gates.
Two of the five qubits are modelled by individual wires, the remaining three are grouped
together, forming a register. Quantum gates are indicated by boxes on the wires, with
letters indicating their names: H and Rx are unary gates; U is a multi-qubit gate; · is
a shortcut for the NOT gate; Controlled and multi-controlled operations are modelled by
filled circles on the controlled qubits, followed by lines ending with gates to be performed
on target qubits; Measurement is indicated by the meter symbol, as those ending qubits 1
and 2; A double wire represents a classical bit carrying the result of the measurement.

• It should be able to prepare the qubits in the computational basis in a finite
number of steps. In practice, qubits are often initialized in the state |0ð¹n.

• It should be isolated to a high degree from coupling to its environment. This
isolation requirement is linked up with the precision required in quantum
computation: the state of the computer at two instants separated by one
clock cycle should ideally differ by only a small amount.

• It should physically be able to perform any unitary evolution of the qubits
using a set of universal gates. For example, to apply a CNOT gate to any
pair of qubits.

• It should be able to measure the qubits in the computational basis.

To fix notation and to provide a short tutorial for readers with a computer science
background that are unfamiliar with the particulars of quantum computing, we
shortly introduce circuit diagrams as abstractions of computation within univer-
sal quantum computers. An exemplary diagram with diverse types of gates is
displayed in Figure 2.4.1. The diagram is to be read from left to right. Qubits
are represented by single wires. Sometimes, when no discrimination on a set of
qubits is required, some wires are grouped together, forming a so called register.
Unless otherwise specified, the qubits are assumed to be initialised in the |0ð¹n
state.

2.5 Adiabatic Quantum Computing

Adiabatic Quantum Computing (AQC) works in a way that is very different to uni-
versal quantum computing [3, 26]. Instead of describing the evolution by a se-
quence of unitary operators, adiabatic quantum computing relies on a smoothly
varying Hamiltonian governing the Schrödinger equation.
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The adiabatic theorem framing the results of AQC is a well-studied theorem in
quantum physics [37]. It originated from the adiabatic hypothesis (appeared
originally in German as “Adiabatenhypothese”) formulated in 1914 by Einstein
in its work on quantum theory. A century ago, Einstein said:

�In the case of an adiabatic –reversible– influence on a system, allowed
movements always change into allowed ones.�

In 1919, Ehrensfest [38] emphasized from the hypothesis that if the system was
in a state characterized by certain quantum numbers before the adiabatic change,
its state after the change would preserve those quantum numbers:

�The quantized effect variables of an allowed movement remain con-
stant in the transition from that movement to an adiabatically related
one.�

This notion of adiabatic invariance is the key of the adiabatic theorem. It is
proven for the first time by Born and Fock in 1928 [39] and modernly formulated
as:

�If the system was initially in a state with a certain number, given an
adiabatic change, the probability of the system going to a state with
a different number is infinitely small, although the energy levels after
the change may differ from their initial values by finite amounts.�

First applications of adiabatic quantum computing for combinatorial optimiza-
tion were introduced in 1989 by Apolloni et al. [40] and in 2000 by Farhi et al. [26].
The basic idea of the optimization approach is to encode the solution of an op-
timization problem as a potential energy, often the ground state –the state with
the lowest energy– of the varying Hamiltonian H(t) of the Schrödinger equation.
In this optimization regime, the quantum system starts from an easy to prepare
ground state of an initial Hamiltonian H(0) and evolves to that of a final Hamil-
tonian H(T ) whose ground state is the solution of an optimization problem.

The adiabatic theorem says that if the evolution varies sufficiently slowly, the
system will instantaneously track the ground state of the Hamiltonian H(t) and
will end up in the ground state of H(1) with high probability. A generic, non-
rigorous formulation of the adiabatic theorem is as follows:
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Theorem 2.5.1 (Adiabatic theorem, adapted from [3])

Let t ∈ [0, T ], T ∈ N and s := t
T
∈ [0, 1]. Let H(s) be a time-dependent Hamil-

tonian and |ϵj(s)ð denote an eigenstate to the possibly degenerated eigenvalue
ϵj(s), i.e., there may be several linearly independent eigenvectors to eigenvalue
ϵj(s), of H(s) with ϵj(s) < ϵj+1(s), ∀s ∈ [0, 1], j ∈ {1, 2, · · · }. If the system is ini-
tialized in the state |ϵj(s)ð, then the time evolution generated by the Schrödinger
equation

iℏ
d

Tds
|È(s)ð = H(s) |È(s)ð , (44)

will instantaneously keep the state |È(s)ð in the eigenstate |ϵj(s)ð provided that
the evolution varies sufficiently slowly.

Rigorous proofs of the adiabatic theorem with convergence bounds were first
given by Kato in 1950 [41] and adapted several times by, among others, Jansen et
al. [37] in 2008, with evidence of the dependence of the success of the optimization
on the spectral gap of the Hamiltonian H(s). They show that the run time T of
the adiabatic optimization should be in the order of O(1/∆2), where

∆ := min
s∈[0,1]

∆(s) := min
s∈[0,1]

{ϵ1(s)− ϵ0(0)} (45)

is the so-called spectral gap, the smallest difference over the time between the
two lowest states energies of the time-dependent Hamiltonian H(s). In other
words, the smaller the spectral gap of H(s), the longer the required evolution
time should be for guaranteeing the success of the optimization. We can now
loosely define adiabatic quantum computing as:

Definition 2.5.1 (AQC, adapted from [3, Definition 1])

Let s ∈ [0, 1]. An adiabatic computation is specified by two Hamiltonians H(0)
and H(1) and a time-dependent Hamiltonian

H(s) := A(s)H(0) + B(s)H(1) (46)

acting on n p-state particles, p g 2, where A and B with lims→1A(s) = 0 and
lims→1 B(s) = 1 are scheduling functions. The ground state of H(0) is unique
and is a tensor product state. The adiabatic computation transforms this state
into an output state that is “close” in the ℓ2 norm to a ground state of H(1).

2.6 Equivalence of AQC and the Universal Model

Despite their apparent differences, several references [3, 12, 26, 42] establish that
the universal model of quantum computing is polynomially equivalent, in terms
of computational complexity, to the adiabatic model and vice versa:
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Theorem 2.6.1 (Equivalence of AQC and the circuit model [42, 43])

The adiabatic model of quantum computation is polynomially equivalent to the
universal model of quantum computation.

Proof : The direction indicating capability of the circuit model to simulate adiabatic evo-
lution can be established by solving the Schrödinger equation in Theorem 2.5.1 for the
unitary time evolution operator

iℏ
d

Tds
U(s) = H(s)U(s) (47)

and setting |È(1)ð = U(1) |0ð. The key is to show that the circuit model can implement the
unitary U(1). We will sketch the proof briefly in order to introduce time discretization, as
we will need such techniques in Section 4.1 and chapter 7 to simulate quantum evolution.

If the Hamiltonian H is time-independent, the Schrödinger equation has the closed-form
solution U(s) = eiHs. Solving the Schrödinger equation for a general time-dependent
Hamiltonian H(s) is one of the greatest challenges of quantum computing. The follow-
ing lemma adapted from Van Dam et al. tells us that we can deviate from the ideal
Hamiltonian H(s) and approximately solve the equation without introducing a too big
error:

Lemma 2.6.1 (Van Dam, Adapted from [43, Lemma 1])

Let T ∈ N, t ∈ [0, T ] and s = t/T ∈ [0, 1]. Let H(s) and H
′(s) be two time-dependent

Hamiltonians and let U(s) and U(s) be the unitary evolutions they induce. If the differ-
ence between the Hamiltonians is limited by ∥H(s) −H

′(s)∥2 f ¶, ∀s ∈ [0, 1], then the

distance between the induced transformations is bounded by ∥U(1)−U
′(1)∥2 f

√
2T¶.

Proof : We follow the proof of Van Dam et al. [43, Lemma 1] and adapt the results to the
change of variable s = t/T .

The Schrödinger equation (where for simplicity, we absorbed the term ℏ in the Hamilto-
nian) implies that

d

dt
ïÈ′(s)|È(s)ð = −iT ïÈ′(s)|(H(s)−H

′(s))|È(s)ð . (48)

Using the fundamental theorem of calculus, it follows that

ïÈ′(s)|È(s)ð − ïÈ′(0)|È(0)ð =
∫ s

0
−iT ïÈ′(ℓ)|(H(ℓ)−H

′(ℓ))|È(ℓ)ð dℓ. (49)

Applying reverse triangle inequality holds

∣
∣
∣
∣

[
∣
∣ïÈ′(s)|È(s)ð

∣
∣− |1|

]∣
∣
∣
∣
f

∣
∣
∣
∣

∫ s

0
−iT

[

ïÈ′(ℓ)|
(
H(ℓ)−H

′(ℓ)
)
|È(ℓ)ð

]

dℓ

∣
∣
∣
∣

(50)

f
∫ s

0

∣
∣
∣
∣
−iT

[

ïÈ′(ℓ)|
(
H(ℓ)−H

′(ℓ)
)
|È(ℓ)ð

]∣
∣
∣
∣
dℓ. (51)

Next, we use the identity ï□|△ð = ∥□∥2∥△∥2 cos"(□,△), with states |□ð = |È′ð and
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|△ð = (H(ℓ)−H
′(ℓ)) |Èð. Since the cosine is always smaller than one, we have

∣
∣
∣
∣

[
∣
∣ïÈ′(s)|È(s)ð

∣
∣− |1|

]∣
∣
∣
∣
f

∫ s

0

∣
∣
∣
∣
T

[

∥
(
H(ℓ)−H

′(ℓ)
)
|È(ℓ)ð ∥2

]∣
∣
∣
∣
dℓ (52)

f
∫ s

0
|T¶|2 dℓ (53)

= sT¶, (54)

It follows that |ïÈ′(s)|È(s)ð| − |1| g −sT¶ yielding |ïÈ′(1)|È(1)ð| g 1−T¶. The rest of the
proof follows Van Dam et al. [43].

Leveraging this result, Van Dam et al. [43] show that the circuit model can effectively
implement the approximated evolution

U
′(1) :=

r∏

j=1

U
′
j(1) = e−i

T

r
H

′
r · · · e−iTr H′

1 , (55)

where U
′
j = e−i

T

r
H

′
j and H

′
j = H(j · Tr ). Indeed, if we regard H

′ as a time-dependent
Hamiltonian with H

′(s) := Hj(s) where j(s) = rs, then ∥H(s)−H
′(s)∥2 f poly(n)/r and

∥U(1)−U
′(1)∥2 ∈ O(

√

T · poly(n)/r), where poly(n) designates a polynomial in n.

The second part of the approximation consists in implementing the unitary transforma-
tions

U
′
j(1) := e−i

T

r
H

′
j = e−i

T

r
(A(j·T

r
)H(0)+B(j·T

r
)H(1)). (56)

This is usually achieved by using the Trotter formula as stated in next theorem:

Theorem 2.6.2 (Trotter formula [12, Theorem 4.3])

Let A and B be Hermitian operators. Then for any real number t ∈ R, it holds

lim
ℓ→∞

(

eitA/ℓeitB/ℓ
)

= eit(A+B). (57)

In practice, one truncates the Trotter formula at ℓ = 2 and approximates U′
j(1) by

U
′′
j (1) := e−i

T

r
A(j·T

r
)H(0) · e−iTr B(j·T

r
)H(1), (58)

which incurs the error ∥U′(1)−U
′′(1)∥2 ∈ O(T 2 ·poly(n)/r). Hence, the universal model

can simulate the adiabatic one with a gate complexity polynomial in the number n of
qubits.

The opposite direction, establishing that the adiabatic model can simulate the circuit
model, was proven more recently by Aharonov et al. [42]. The challenge is to show that
given an arbitrary quantum circuit U, one can design a Hamiltonian H whose ground
state equals the output of the circuit starting from the initial state |0ð¹n, without knowing
this output. The proof uses the “circuit-to-Hamiltonian” construction which goes back to
Kitaev [44]. In this construction, one supposes that the unitary evolution operator can be
decomposed into r unitaries U1, . . . ,Ur acting on one or two qubits each. The quantum
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state after the j-th gate is denoted by |³(j)ð. The goal is to design the Hamiltonian whose
ground state is the entire history

|¸ð := 1√
r

r∑

j=1

|³(j)ð ¹ |1¹j0¹r−jðc (59)

of the computation. The second r qubit-register is the clock register – denoted by the
exponent c – and will help verifying the correctness of the quantum propagation at the
j-th step. Aharanov [42] introduced the following 4 Hamiltonians, all having as ground
state the desired state of computation with energy 0:

• The clockinit Hamiltonian
Hclockinit := |1ð ï1|c1 (60)

checks whether the initial first clock qubit is correctly set. The subscript indicates
on which qubit the operator is acting; in this notation, the identity operation on the
remaining qubits is implied and omitted for clarity.

• The clock Hamiltonian

Hclock :=

r−1∑

j=1

|01ð ï01|cj,j+1 (61)

checks, by knowing the state of the first clock qubit, whether the subsequent clock
qubits have the correct form, i.e., a sequence of 1s followed by a sequence of 0s.

• The input Hamiltonian

Hinput :=

n∑

i=1

|1ð ï1|i ¹ |0ð ï0|c0 (62)

ensures that if the clock qubits are in the state |0¹rð, then the computational qubits
should be in the state |0¹nð.

• The circuit Hamiltonian

Hcircuit :=

r∑

j=1

Hj (63)

with

Hj :=I¹ |100ð ï100|cj−1,j,j+1 −Uj ¹ |110ð ï100|cj−1,j,j+1 (64)

−U
 
j ¹ |100ð ï110|cj−1,j,j+1 + I¹ |110ð ï110|cj−1,j,j+1

and boundary values

H1 :=I¹ |00ð ï00|c1,2 −Uj ¹ |10ð ï00|c1,2 (65)

−U
 
j ¹ |00ð ï10|c1,2 + I¹ |10ð ï10|c1,2

Hr :=I¹ |10ð ï10|cr−1,r −Uj ¹ |11ð ï10|cr−1,r (66)

−U
 
j ¹ |10ð ï11|cr−1,r + I¹ |11ð ï11|cr−1,r

describes the time evolution with operators Uj and U
 
j , while the clock register
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Figure 2.7.1: Brief overview of the evolution of quantum computing over the years. (Up-
per timeline) Development of the theory. (Below timeline) Development of quantum
devices. Enormous efforts have been made on both sides to build the foundation of quan-
tum computing.

state moves forwards or backwards by one step, or stays unchanged.

By defining the Hamiltonians

H(0) := Hclockinit +Hinput +Hclock (67)

H(1) := Hcircuit +Hinput +Hclock, (68)

one verifies that the time-variying Hamiltonian H(s) for the Schrödinger equation has
ground states |0ð¹n+r and |¸ð at s = 0 and s = 1 respectively, both with eigenvalues 0.

In summary, the adiabatic and universal models of quantum computing are equiv-
alent. However, the translation from one model to the other often brings addi-
tional overhead, so that it is prudent to select the model that is most suitable for
the practical problem to be solved.

2.7 Noisy Intermediate Scale Quantum Devices

Quantum computing is still in an early stage, and tremendous efforts are made in
both research and hardware construction to enable full practically useful quan-
tum computing.

Figure 2.7.1 provides an overview timeline on the evolution of quantum comput-
ing over the years with selected particularly impactful events.

On the research side, after the speculations on a potential quantum computer, the
first practically relevant demonstration of the supremacy of universal quantum
over classical computing is arguably the factoring algorithm proposed by Shor in
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Figure 2.7.2: Noisy intermediate scale devices as state-of-the-art devices in year 2023.
(Left) The IBM quantum system two (foreground) running with three 133-qubit heron
processors (node topology in the background) [7]. (Right) The D-Wave quantum an-
nealer (foreground) with its advantage processor having more than 5000 qubits (bars in
the background) [8]. Noisy intermediate scale devices are still physically large, mainly
because of the cooling required to keep the qubits in a coherent state. Note the sparse
connectivity of the qubits for both machines.

1994 [5], which could factorize any integer in polynomial time and thus exponen-
tially faster than any known classical algorithm to that date. A second celebrated
universal quantum algorithm was proposed by Grover in 1996 [6] for searching
an element in an unsorted database quadratically more faster than any classical
algorithm. In the early 2000, Farhi et al. [26] proposed an adiabatic algorithm for
solving a combinatorial constraint satisfaction problem.

On the hardware development side, several quantum computer manufacturing
companies have emerged. Notable examples at the time of writing this thesis
were IBM [7] and Google [45] for universal and D-Wave [8] for adiabatic quan-
tum computers. A first working two-qubit quantum computer was proposed in
1997 following the requirements of Divincenzo [36]. D-Wave released the first
adiabatic quantum computer of 128 qubits in 2011. In 2023, the last releases of
quantum computers with the most qubits included the 133-qubit computers from
IBM and 5000-qubit quantum annealer from D-Wave.

Currently available quantum computers are composed of only a few hundreds of
non-error corrected qubits [9]. These early computers are called noisy intermediate-
scale quantum (NISQ) computers. It is practically difficult to completely isolate a
quantum system, which makes it difficult to preserve quantum coherence, i.e.,
the time period in which the qubits still have their quantum properties to per-
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form calculation. In consequence, the qubits are noisy, not corrected, and perform
imperfect operations.

Another limitation of NISQ devices is their typically non-fully connected qubit
topology. An example of such NISQ devices with their qubit topology is pro-
vided in Figure 2.7.2. Embedding logical qubits from the computation onto the
hardware topology with limited qubit connectivity increases the computation
overhead. Designing quantum algorithms that can achieve quantum advantage
with NISQ devices should take into account all their limitations and should be
hardware friendly. Preferably, NISQ algorithms should not require long coher-
ence time. They should, for example, consist in very short depth quantum cir-
cuits and respect the connectivity limitations.

2.8 Conclusion

While the universal and adiabatic models of quantum computing are equivalent,
current hardware does not allow to seamlessly switch between both. Therefore,
from an image processing point of view, it is interesting to investigate which
prototypical sub-problems are particularly amenable to one of the two models,
and to compare the solution strategies.

In Chapter 4, we will investigate variational methods to solve the Ising problem
and in Chapter 5 we will apply fully universal quantum methods to the same
problem. Adiabatic quantum computing will be used to point sets registration
in Chapter 6 and quantum evolution will serve to build the theory of quantum
Hamiltonian descent in Chapter 7.
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CHAPTER 3

An Overview of Variational Methods and Quantum
Optimization

This chapter provides a brief overview of optimization in and with quantum
computing. It builds on the basic notions provided in Chapter 2 and serves as
foundation for Chapters 4, 6 and 7.

The first part of the chapter presents optimization from a general and classical
point of view. In the second part we move to variational quantum methods.
These are methods seeking to optimize a set of gate parameters to produce a spe-
cific output. We review the parameterization schemes and optimization strate-
gies in variational quantum computing. The third part of the chapter is dedi-
cated to optimization with adiabatic quantum computing. The focus here is put
on the Ising model and its variants, as well as on quantum annealing on D-Wave
machines.

3.1 Optimization

In finite-dimensional optimization [10, 11], the goal is to extremize, commonly to
minimize, a certain real-valued function f : X → R on a feasible set X ¦ R

n:

inf
x∈X

f(x). (69)

More important than the minimum value of f is the point x⋆ ∈ X that extremizes
the function. The function f , called the objective function, encodes a practically
useful problem and the point x⋆, called the minimizer, the solution of the prob-
lem. The numerical routine used for optimizing the objective is called optimizer
or solver.
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Only in rare cases where the objective function is convex we can hope to robustly
find a global minimizer. For non-convex problems, as is generally the case in vari-
ational quantum computing, minimizing the objective function can be extremely
challenging. Finding the minimum of the objective function can classically be
achieved by different ways, which can be classified in two categories: On the
one hand are the gradient-based solvers, and on the other-hand the gradient-free
solvers. In the following, we comprehensively review some popular classical
solvers and discuss their applicability to variational quantum objectives.

3.1.1 Gradient-based Optimizers

We assume the objective function f in Equation (69) to be sufficiently smooth,
i.e., continuously differentiable as often as required. Gradient-based solvers, as
their name suggests, rely on optimality conditions and gradient information to
find the minimizer x⋆ of f . A first-order necessary conditions for x⋆ being the
minimizer of f is that the gradient∇f vanishes at x⋆. This makes−∇f one of the
most-obvious, “steepest-descent” direction in which to search for the minimizer.

Intuitively, as presented in Figure 1.2.2 in the introduction, the iterates of gradient-
based methods can be understood as a ball rolling downhills on a landscape, with
direction and speed according to the local slope of the landscape. Given that the
gradient is a local property of f , the ball has no information about the rest of the
landscape. In the non-convex setting, the best we can generally expect is for the
ball to roll into a local minimum; there is no guarantee of reaching the global
minimum.

There exist a large variety of gradient-based solvers, ranging from p-order meth-
ods – using p-th order local approximations of f – to accelerated methods – using,
in addition to the derivatives of f , also information from previous optimization
steps. Below we give few common examples of gradient-based methods:

Gradient Descent.

Perhaps the most simple gradient-based method is the gradient-descent algorithm
which typically operates in the non-constrained setting where X = R

n, n ∈ N. It
uses first-order optimality conditions to generate a series of iterates

xk+1 := xk + ³kpk, pk := −∇f(xk), (70)

where, for k = 0, 1, . . ., the term pk is the search direction and ³k the so-called step
size. One can think of the iterate xk+1 as the minimizer of a regularized, con-
vex Taylor approximation of f . Indeed, one recovers the iterate xk+1 by simply
writing down the necessary optimality condition of the problem:

xk+1 := argmin
x∈X

{

f(xk) + ï∇f(xk), x− xkð+
1

2³k
∥x− xk∥2

}

. (71)
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The first two terms linearly and locally approximate f at xk and ensure a descent
direction, while the last term regularizes the local search by ensuring that the next
iterate xk+1 will not be too far, in the Euclidean norm, from the current iterate xk.

It is worth mentioning the crucial task of choosing of the step-size ³k. While the
search direction provides a direction in which the objective function decreases,
the steps size provides how long a step should be taken in that direction. Choos-
ing the step size is a trade-off: If the step size is too small, the optimization can
be too slow. On the contrary, if the step size is too large, the method can diverge.
Only in rare cases, such as optimizing a convex quadratic function, a closed for-
mula for the optimal step size can be found. In general, determining the optimal
step size is more difficult and can require more evaluations of the objective func-
tion. Backtracking line-search methods [46], as an example, evaluate the objective
for a sequence of step sizes and return one from the sequence satisfying certain
conditions that guarantee existence of a converging sub-sequence.

Normalized Gradient Descent.

Gradient descent is inherently designed to converge towards stationary points
where the gradient of the objective function vanishes. In the non-convex setting,
escaping local minima or saddle points can be time-consuming. Normalized gra-
dient descent [47] presents a natural modification of gradient descent, emphasiz-
ing the negative direction of the gradient while disregarding its amplitude. The
update rule is given by

xk+1 := xk + ³kpk, pk := −
∇f(xk)
∥∇f(xk)∥2

. (72)

Recent work by Suzuki et al. [48] identifies normalized gradient descent as a
potent optimization strategy for variational quantum algorithms. Specifically,
in [48], experimental evidence demonstrates that normalized gradient steps are
more effective in escaping non-global minima than traditional gradient steps.

Newton’s Method.

In Newton’s method, the iterate is obtained by minimizing a second-order approx-
imation of the function:

xk+1 := argmin
x∈X

{

f(xk) + ï∇f(xk), x− xkð+
1

2³k
∥x− xk∥2∇2f(xk)

}

, (73)

with the special norm in the last term defined as ∥ · ∥□ :=
√

ï·|□|·ð. In particular,
Newton’s method adjusts the regularization by modifying the metric on the fea-
sible set. If the Hessian ∇2f(xk) of f at xk is positive definite, then the Newton
search direction is a descent direction and reads

pk := (∇2f(xk))
−1(−∇f(xk)). (74)
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This adjustment can be proven to locally achieve quadratic convergence, which
– counting iterations – is much faster than the vanilla gradient descent method,
which converges only linearly in the best case and sub-linearly in general. Of
course, computing the Hessian and solving linear equation systems at every step
is the cost to pay for obtaining this speed-up.

Discussion.

Optimizing quantum objectives comes with another serious challenge, that of
noisy qubits and probabilistic shots. In fact, a more realistic model of quantum
objective functions in the NISQ area could read

inf
x∈X

f̂(x), f̂(x) = ¸1(f(x)) + ¸2(x), (75)

where f is the true function encoding the problem, ¸1 is a function modelling the
quantum noise and ¸2 that modelling the shot noise. The noise functions differ at
each iteration.

Gradient descent in the shot noise-only, i.e., measurement noise-only, setting has
similarities to stochastic gradient descent, a well-known optimization technique
used in machine learning [49, 50]. A classical update rule of stochastic gradient
descent reads

xk+1 := xk + ³kpk, pk := −∇f(xk) +N (µ, Ã), (76)

where N (µ, Ã) is Gaussian noise with mean µ and variance Ã. Although shot
noise can severely affect function and gradient evaluations and affect descent di-
rections, it can sometimes be useful, as it can cause the rolling ball to escape local
minima and possibly find its way to better minima or even the global minimum.

More severe is quantum noise such as Pauli noise or depolarizing noise which
transforms quantum states into mixed states [12, Section 8.3]: While pure states
can be understood as 3-dimensional units vectors on the Bloch sphere, c.f. Fig-
ure 2.1.1, mixed states are vectors with length smaller than one and lying within
the sphere. A recent work [51] has shown that quantum noise may cause vanish-
ing gradients, a phenomenon known as noise-induced barren plateaus. Roughly,
a barren plateaus tends to flatten the objective landscape. On the flat areas, the
gradient vanishes exponentially with the number of qubits, so that more mea-
surement shots is required to gain any accuracy in the gradient evaluation.

3.1.2 Gradient-free Optimizers

Gradient-free optimizers have attracted great interest in the quantum comput-
ing community. They are borrowed from classical computing where either the
gradient of the objective is not available or the objective function is too noisy for
optimization. An overview of gradient-free optimizers in provided in [52], see
also [10]. Below, we present some representative ones that typically build on the
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notion of simplex, which in general consists of all convex combinations of n + 1
affinely independent points in R

n: A line segment in one dimension, a triangle in
two dimensions, a tetrahedron in three dimensions, and so on.

The Nelder-Mead Simplex Method.

Nelder and Mead [53] proposed a simplex method for function minimization.
The method found great applications in quantum computing. It was, for instance,
used to optimize the VQE objective function in the original publication [54]. The
method iteratively compares the objective values at the vertices {x0, x1, . . . , xn}
defining a simplex, replacing from the set the point xh with the highest objective
value, that is, the vertex such that f(xh) = max {f(xj), j = 1, . . . , n}. The simplex
adapts itself to the local landscape at each iteration and contracts on a final local
minimum. The next xhnew candidate for replacing xh is computed as

xhnew := −³xh + (1 + ³)x̄, with x̄ :=
1

n

n∑

j=0,j ̸=h
xj, (77)

where ³ is a “reflection coefficient”, a parameter chosen in the range (0, 1). We
see that if f is a non-constant linear function, we have f(xhnew) < f(x̄) and we
expect the iteration to be successful in the sense that the new function value is
better than the function value of the average point.

In the general case where f is non-linear, three situations may occur while trying
to replace xh by xhnew:

1. If
min

j ̸=h,j=0,...,n

{
f(xj)

}
f f(xhnew) f max

j ̸=h,j=0,...,n

{
f(xj)

}
, (78)

the reflection is accepted and xh is replaced by xhnew.

2. If
f(xhnew) < min

j ̸=h,j=0,...,n

{
f(xj)

}
, (79)

the new vertex xhnew is better than all other vertices in the simplex, and the
method tries to expand this decreasing direction by computing

xhnew⋆ := µxhnew + (1− µ)x̄, (80)

where µ is the “expansion coefficient”, a constant chosen greater than 1. If
f(xhnew⋆) < f(xhnew), the expansion is accepted and xh is replaced by xhnew⋆ . If
this fails to happen, the expansion is rejected in favor of the reflection and
xh is replaced by xhnew.

3. If
f(xhnew) > max

j ̸=h,j=0,...,n

{
f(xj)

}
, (81)
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the reflection has failed and the method tries to contract the search direction
by computing

xhnew⋆ := ´xh + (1− ´)x̄, (82)

where ´ is the “contraction coefficient”, a constant chosen in the range
(0, 1). If f(xhnew⋆) < min

{
f(xh), f(xhnew)

}
, the contraction is accepted and

xh is replaced by xhnew⋆ . If this fails to happen, the method “shrinks” the
simplex and replaces each vertex xj by xjnew := (xj + xℓ)/2, where xℓ is
the vertex with lowest objective value, i.e., the vertex for which it holds
f(xℓ) = min {f(xj), j = 0, . . . , n}.

The parameters ³, ´, µ serve to control the factor by which the volume of the
simplex changes by the reflection, contraction and expansion respectively. They
should be chosen in general to avoid that the simplex collapses into a degen-
erated one with volume equal to zero. Typical values are ³ = 1, ´ = 1/2 and
µ = 2. Illustrative examples for these typical parameters in two dimensions are
presented in Figure 3.1.1.

The COBYLA Method.

Constrained Optimization by Linear Approximation (COBYLA) is a method pro-
posed by Powell [55], initially to extend the Nelder-Mead method to constrained
optimization. It has recently found multiple applications in quantum computing
because of its relatively low run-time [56, 57] compared to gradient-based solvers
for the same problem. The algorithm takes into consideration a lot of factors and
is only roughly sketched here.

The COBYLA method is concerned with the constrained optimization problem

inf
x∈X

f(x) (83)

s.t. h(x) g 0, (84)

for some functions h : X → R
m,m ∈ N where h(x) g 0 acts element-wise on

the argument. The feasible set here is X = R
n, so that it does not encode more

constraints. The method also tracks a simplex {x0, x1, . . . , xn} and changes one
vertex per iteration, but selects both the vertex to be modified and the new vertex
candidate differently than Nelder-Mead.

A merit function

È(x) := f(x) + µ ·max {0,max {−hi(x), i = 1, 2, . . . ,m}} (85)

is introduced to evaluate the quality of a point, where the parameter µ is adjusted
automatically. The vertex xh to be changed is guided by two factors: Either the
current simplex is “unacceptable” and replacing xh by a new point xnew∆ will
make it acceptable, or we seek to significantly decrease the value of the merit
function and xh is replaced by a new point xnew⋆ :
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xh x1 = xℓ

x2

x̄

xhnew

(a) Reflection.

xh x1 = xℓ

x2

x̄
xhnew⋆

(c) Contraction.

xh x1 = xℓ

x2

x̄

xhnew⋆

(b) Expansion.

xh x1 = xℓ

x2

x2new

x1new

(d) Shrinkage.

Figure 3.1.1: An iteration of the Nelder-Mead simplex method for function minimization.
The initial simplex is presented in olive and the update in solid black. The objective
function is evaluated at the vertices of the simplex, and the vertex xh with the highest
objective value is selected for replacement. (a) The method tries to reflect the vertex xh.
(b) If the new point xhnew produces a new minimum, the simplex tries to expand itself
in the direction of xhnew. (c) If xhnew still has the highest objective value, the simplex is
contracted by a small step in the direction of xhnew. (d) If the resulting point xhnew⋆ is still
bad, the simplex is shrunk.

1. The current simplex is unacceptable.

Let Ãj be the Euclidian distance of the vertex xj to the opposite face of the
current simplex and ¸j be the length of the edge between xj and the current
optimal vertex xℓ. The current simplex is “acceptable” if and only if

Ãj g ³Ä and ¸j f ´Ä, (86)

for j = 1, 2, . . . , n. The parameter Ä controls the size of the trust region, and
the parameters ³, ´ are chosen such that 0 < ³ < 1 < ´ with typical values
³ = 1/4 and ´ = 2.1, control that the simplex does not completely shrink. If
the acceptability conditions in Equation (86) are not fulfilled, the vertex xh

that violates the most either one or the other condition is replaced by

xhnew∆ := xℓ ± µÄnh, (87)
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where µ ∈ (³, 1) is a constant with typical value µ = 1/2 and nh is the unit
vector that is perpendicular to the simplex face opposite to xh. The sign ±
is chosen according to which sign most reduces the merit function.

2. The merit function significantly decreases.

If the current simplex is acceptable, the method still considers the vertex xh

with the worst condition value Ãj or ¸j , c.f. Equation (86), as the vertex to
be replaced. The method computes the new vertex xhnew⋆ as the solution of
the problem

inf
x∈X

f̂(x) (88)

s.t. ĥ(x) g 0 (89)

∥x− xℓ∥2 f Ä, (90)

where f̂ and ĥ are functions that linearly interpolate f and h, respectively,
on the simplex vertices. If the value of the merit function at xhnew⋆ satisfies
È(xhnew⋆) < È(xh), the vertex xh is replaced. If not the method reduces the
trust region Ä and moves to the next iteration.

In the original publication [55], Powell investigated some convergence properties
of the method, emphasizing its suitability for optimizing functions with a small
number of variables such as n f 9, as linear approximations may be inefficient.

Discussion

The Nelder-Mead simplex and the COBYLA methods pose fewer restrictions –
such as differentiability – on f and individual steps are relatively efficient as no
derivatives have to be computed. However, they remain heuristic algorithms
that provably [58] not necessarily converge to stationary points, i.e., points with
vanishing gradients.

3.2 Variational Quantum Algorithms
In this section, we discuss how to encode practical problems in quantum com-
puting. The general way is to encode the problem into the energy of a quantum
system [59], which serves as objective function. Given that observables are Her-
mitian matrices, they inherently possess real eigenvalues, thereby enabling their
effective deployment for encoding optimization problems. In scenarios where
the measurement operators lack Hermitian characteristics, the optimization pro-
cedure typically involves working with a real-valued function derived from the
expectation.

A typical workflow of variational quantum algorithms in provided in Figure 3.2.1.
It mostly consists of an hybrid quantum-classical loop which uses a quantum
computer to estimate the objective function and a classical numerical solver to
update the variational parameters. A detailed explanation of each figure compo-
nent is provided next.
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|0ð Rx Ry

ïM(µ)ð¹
|0ð Rx Ry

|0ð Rx Ry

|0ð Rx Ry

U(¹)

(¹, µ)newUpdate parameters of the variational circuit

QPU
Estimates objective function

CPU
Optimization algorithm

Figure 3.2.1: Schematic representation of variational quantum algorithms, adapted
from [60, Figure 2.3]. The quantum machine uses a set of variational angles to prepare
and measure an ansatz |È(¹)ð = U(¹) |0ð. The outcomes serve to estimate the objective
function f(¹, µ) =

∑

k fk(ïM(µ)ð¹). The resulting information is forwarded to a classi-
cal machine, which uses a numerical solver to estimate the new parameter (¹, µ)new. The
loop is repeated until a stop criterion is met.

3.2.1 Variational Quantum Energies

The term variational assumes a dual interpretation in our context: The state of the
quantum system may be parameterized by a set of angles, or the observable is
constructed to depend on some modifiable parameters, or both. The objective
function generally takes the form

f(¹, µ) =
∑

k

fk (ïÈ(¹)|M(µ)|È(¹)ð) , (91)

for ¹ resp. µ from some parameter spaces Θ resp. Γ, and some set of real valued
functions {fk : Θ× Γ→ R} [59]. The variational state |È(¹)ð := U(¹) |0ð, with U

being a quantum circuit that depends on rotation parameters ¹, is called ansatz.

Example : The following examples illustrate how practical problems can be encoded into
variational quantum energies:

1. Variational Quantum Eigensolver.

The variational quantum eigensolver (VQE) introduced by Peruzzo et al. [54] be-
longs to the earliest proposals for encoding practical problems using quantum en-
ergies. It uses the variational principle of quantum mechanics to find the ground
state |q⋆ð of a quantum Hamiltonian H. The variational principle states that the ex-
pectation ïÈ|H|Èð is lower-bounded by the ground state energy Cmin of H. Indeed,
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for an arbitrary superposition state |Èð =∑2n−1
q=0 ³q |qð, we have

ïÈ|H|Èð =
2n−1∑

q=0

|³q|2 ïq|H|qð (92)

g
2n−1∑

q=0

|³q|2 ïq⋆|H|q⋆ð =: Cmin, (93)

where Cmin := min {ïq|H|qð , q = 0, . . . , 2n − 1} it the minimum function value. The
variational eigensolver now uses a set of angles ¹ to prepare the ansatz |È(¹)ð. The
goal is ultimately to minimize the function

f(¹) = ïÈ(¹)|H|È(¹)ð . (94)

The variational ansatz |È(¹)ð is prepared and measured on a quantum machine,
delivering outcomes used to estimate the function value f(¹), and eventually its
derivatives. A classical solver uses those estimates to compute the new parameters
minimizing the objective function.

2. Variational Quantum Singular Value Decomposition.

The variational quantum singular value decomposition (VQSVD) algorithm pro-
posed by Wang et al. [61] seeks to find the singular value decomposition of a matrix
M ∈ R

n×n which is assumed to be decomposable into a linear combination of uni-
taries as M =

∑

k ckAk with unitary matrices Ak and real values ck. The goal is to
find the singular value decomposition M = UΣV , where U and V are unitary ma-
trices in R

n,n and Σ is a diagonal real matrix with r positive real entries d1, . . . , dr,
where r is the rank of M. The idea of the variational quantum eigensolver is to
search for parameters ³⋆ and ´⋆ of two parameterized circuits U(³) and U(´) that
best approximate the matrix M. The goal is achieved by minimizing the objective
function

f(³, ´) = −
T∑

j=1

qj · Re(ïÈj |U(³) M V(´)|Èjð) (95)

with real positive, empirically chosen numbers q1 > . . . > qT and computational
basis states |Èjð, j = 1, . . . , T for some T ∈ N>0.

The functionℜ(·), denoting the real part of the argument, is estimated on a quantum
computer and classically used to minimize the objective function f . The authors
show that the objective f is minimized if and only if ïÈj |U(³⋆) M V(´⋆)|Èjð = dj ,
where d1 > . . . > dT are the largest singular values of M. Moreover, ïÈj |U(³⋆) 

and V(´⋆) |Èjð are the left and right singular vectors, respectively.

3.2.2 Computing Quantum Gradients

Gradient-based algorithms as discussed in the previous section require to effi-
ciently compute gradients. The question of how to compute gradients is ad-
dressed now. We start from the familiar definition of the gradient:
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Definition 3.2.1 (Gradient)

Let f : X → R be a function on X ¦ R
n. The gradient ∇f(x) of f at x ∈ X is the

vector

∇f(x) :=






∂
∂x1
f(x)
...

∂
∂xn

f(x)




 , (96)

where
∂

∂xj
f(x) = lim

ϵ→0

f(x+ ϵ · ej)− f(x)
ϵ

(97)

is the partial derivative of f with respect to xj , with ej being the the j-th canon-
ical unit-vector.

In classical optimization, there are several strategies for computing gradients:
Analytic derivation, which is error-prone and inflexible, approximation by finite
differences, which is imprecise and requires careful handling in order to not af-
fect convergence, and automatic differentiation, which is convenient but still re-
quires additional computations. In contrast, one of the peculiarities of quantum
computing is that it allows to evaluate analytical gradients for a large class of
quantum objectives.

Finite Differences.

The finite differences method is a numerical scheme for approximating the gradient
∇f(x). It relies on the first order Taylor-approximation

f(x+ h) = f(x) + h¦∇f(x) +O(∥h∥22), (98)

for an arbitrary vector h ∈ X . Given a candidate implementation ∇̃f(x) of the
gradient, this approximation allows, by choosing arbitrarily a vector h with a
small norm, to verify the correctness of the implementation, as the j-th gra-
dient component (∇̃f(x))j should be approximated by the weighted difference
1
hj

(f(x+ h)− f(x)) with an error in the order ofO(∥h∥2). This immediately leads

to the forward differences approximation

∂

∂xj
f(xj) ≈

1

ϵj
(f(x+ ϵj · ej)− f(x)) (99)

for the gradient components. Similarly, the backward differences approximation is

∂

∂xj
f(xj) ≈

1

ϵj
(f(x)− f(x− ϵj · ej)) , (100)
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and by summing up the forward and backward formulae with
ϵj
2

instead of ϵj ,
one obtains the central differences formula

∂

∂xj
f(xj) ≈

1

ϵj

(

f
(

x+
ϵj
2
· ej
)

− f
(

x− ϵj
2
· ej
))

. (101)

Finite differences are simple to implement and require only function evaluations.
However, finite-differences methods are limited in precision, in particular with
finite-precision computations. Also, the required number of function evaluations
can still be very large for high-dimensional problems: In general, 2n evaluations
are required for approximating the gradient of an n-dimensional objective f .

Parameter Shift Rule.

The parameter shift rule [62] is a simple but exact method for evaluating the ana-
lytical gradient of quantum objective functions with respect to ansatz parameters.

Lemma 3.2.1 (Parameter shift rule, adapted from [62, Section E])

Let f be an objective function of the form

f(¹) = ïÈ(¹)|M|È(¹)ð , with |È(¹)ð = U(¹) |0ð . (102)

Furthermore, let the parameterized circuit U(¹) be a chain U(¹) :=
∏n

j=1 Uj(¹j)
of single unitary operators Uj that are one-parameter dependent and in turn
generated by unitary and Hermitian operators (Section 2.3.5). Then the exact
partial derivative of f with respect to ¹j can be computed by

∂

∂¹j
f(¹) =

1

2

(

f
(

¹ +
Ã

2
· ej
)

− f
(

¹ − Ã

2
· ej
))

, (103)

i.e., by evaluating the objective function twice with parameter ¹j shifted by
±Ã/2.

Proof : We follow the ideas of [62]. As discussed in Section 2.3.5, we can write Uj(¹j) =
exp(−i¹jAj/2) with unitary and Hermitian operators Aj . The proof of the parameter
shift rule uses partial derivatives of Uj with respect to ¹j . First, note that

∂

∂¹j
Uj(¹j) =

(

− iAj

2

)

·Uj(¹j). (104)

For convenience, we will write U := U(¹), Uj := Uj(¹j) and Uj:k = Uj · · ·Uk. Using
the chain rule for computing derivatives, we obtain

∂

∂¹j
f(¹) =

〈

0

∣
∣
∣
∣
∣
U

 
j+1:n

(
∂

∂¹j
Uj(¹j)

) 
U

 
1:j−1MU

∣
∣
∣
∣
∣
0

〉

(105)

+

〈

0

∣
∣
∣
∣
U

 
MU1:j−1

(
∂

∂¹j
Uj(¹j)

)

Uj+1:n

∣
∣
∣
∣
0

〉

, (106)
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in which we plug in the expression in Equation (104) to get

∂

∂¹j
f(¹) =

1

2

〈

0
∣
∣
∣U

 
j:n(−iAj)

 
U

 
1:j−1MU

∣
∣
∣ 0
〉

+
1

2

〈

0
∣
∣
∣U

 
MU1:j−1(−iAj)Uj:n

∣
∣
∣ 0
〉

, (107)

which collapses to

∂

∂¹j
f(¹) = − i

2

〈

0
∣
∣
∣U

 
j:n

[

U
 
1:j−1MU1:j−1, Aj

]

Uj:n

∣
∣
∣ 0
〉

, (108)

where [□, △] = □
 △−△ 

□ is the commutator of □ and△.

The nice property that the generators Aj are Hermitian and unitary yields, for any oper-
ator O of compatible dimensions, the identities

exp

(

− iÃ
4
Aj

)

O exp

(
iÃ

4
Aj

)

=
2

4
(I− iAj)O(I+ iAj)

=
2

4
(O+ iOAj − iAjO+AjOAj) , (109)

exp

(
iÃ

4
Aj

)

O exp

(

− iÃ
4
Aj

)

=
2

4
(I+ iAj)O(I− iAj)

=
2

4
(O− iOAj + iAjO+AjOAj) . (110)

Hence,

i [O, Aj ] = exp

(

− iÃ
4
Aj

)

O exp

(
iÃ

4
Aj

)

− exp

(
iÃ

4
Aj

)

O exp

(

− iÃ
4
Aj

)

(111)

= Uj

(
iÃ

2

) 
OUj

(
iÃ

2

)

−Uj

(

− iÃ
2

) 
OUj

(

− iÃ
2

)

, (112)

where now, and according to the construction in Section 2.3.5, the parentheses indicate
the argument of Uj and not a multiplication. Inserting this into Equation (108) yields

∂

∂¹j
f(¹) =

1

2

〈

0

∣
∣
∣
∣
∣
U

 
j:nUj

(
iÃ

2

) 
U  
1:j−1MU1:j−1Uj

(
iÃ

2

)

Uj:n

∣
∣
∣
∣
∣
0

〉

(113)

− 1

2

〈

0

∣
∣
∣
∣
∣
U

 
j:nUj

(

− iÃ
2
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so that
∂

∂¹j
f(¹) =

1

2

(

f
(

¹ +
Ã

2
· ej
)

− f
(

¹ − Ã

2
· ej
))

, (115)

This concludes the proof.

The parameter shift rule uses the exact same circuit as the function evaluation
and, up to shot noise, allows to compute the exact gradient. Its drawback, just as
that of finite differences, is that it requires 2n function evaluations to compute the
gradient of the n-dimensional objective function f .
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Simultaneous Perturbation Stochastic Approximation.

The simultaneous perturbation stochastic approximation (SPSA) method allows
to approximate the gradient with only two function calls, irrespective of the num-
ber n of parameters [63, 64]. It consists of choosing a random perturbation direc-
tion ¶ = (¶1, . . . , ¶n) and evaluating the change in function value when simulta-
neously perturbating all the variables. The partial derivative with respect to xj is
proportional to this change in the function value:

∂

∂xj
f(x) =

1

2c¶j

(

f (x+ c · ¶)− f (x− c · ¶)
)

, (116)

where c ∈ Rg0 is a positive real constant. Typically, c = const /(1 + iter)µ, µ ∈ R

and ¶ is a zero-mean vector with each entry generated from a Bernoulli±1 distri-
bution with probability of 1/2 for each ±1 outcome. SPSA can provably find, if
they exist, local and global minima of the optimization problem in approximately
the same number of iterations as finite-differences-like methods, but with signif-
icantly fewer function evaluations. The basic idea of the proof [65] is to show
that the difference between the expectation value of the estimated gradients up
to iteration k and the true gradient of the function at iterate xk vanishes.

The SPSA method is in some settings recommended for problems with noisy
measurements of the objective function, as it is the case with quantum measure-
ment [66, 67, 68]. Although yet not used in our experiments, it could be applied
to optimize the objective function of Chapter 4.

3.3 Adiabatic Quantum Optimization
An important class of optimization problems particularly suited for adiabatic
quantum computers, such as D-Wave machines, are binary optimization problems.
Typical representatives are the Ising problem and its variants.

3.3.1 The Ising Problem

The Ising model [69] describes a quantum mechanical system with n ∈ N particles
or spin systems, each of which can be in two possible states: Each spin si for
i = 1, . . . , n, can be in the states +1 or −1, written

si = (−1)qi , qi ∈ {0, 1} . (117)

Each spin system i can interact with some external energy of strength Cii or with
an adjacent system j by a mutual interaction energy Cij . The complete system can
be modelled by a general undirected n-vertices graph G = (S, E , C) with node set
S := {s1, . . . , sn}, E ¦ S × S and a cost function C : E → R with C(si, sj) := Cij on
E . The total energy assigned by the Ising model to a system S is given by

J (S) :=
n∑

i=1

Ciisi +
∑

1fi<jfn
Cijsisj. (118)
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The Ising problem aims to solve

arg min
S∈{−1,1}n

J (S), (119)

i.e., to search for a spin configuration of the system with minimal energy.

Hamiltonian Formulation.

Noting that the spin si is the eigenvalue of the Pauli-Z operator to the eigenvector
|qið, i.e., Z |qið = si |qið , qi ∈ {0, 1}, it follows that, on a quantum system in
the state |qð =

⊗n
i=1 |qið , qi ∈ {0, 1}, the energy J (S) is the eigenvalue to the

eigenvector |qð, or the expectation ïq|C|qð, of the (2n × 2n) Hamiltonian

C =

n∑

i=1

CiiZi +
∑

1fi<jfn
CijZiZj, (120)

where

Zi := I¹ · · · ¹ I¹
i−th position
︷︸︸︷

Z ¹I¹ · · · ¹ I (121)

denotes the Pauli-Z operator acting on the i-th particle of the system. Problem
(119) can equivalently be phrased as

minimize
|qð

ïq|C|qð

subject to |qð =
n⊗

i=1

|qið , qi ∈ {0, 1} .
(122)

As the Pauli-Z operator are diagonal, the observable C in Equation (120) is a diag-
onal matrix. From the variation principle – see the VQE-example from Section 3.2
– we recall that the expectation ïCð is lower-bounded by the smallest eigenvalue

Cmin of C: For an arbitrary superposition state |Èð =∑2n−1
q=0 ³q |qð, we have

ïÈ|C|Èð =
2n−1∑

q=0

|³q|2 ïq|C|qð (123)

g
2n−1∑

q=0

|³q|2 ïq⋆|C|q⋆ð = Cmin. (124)

Solving the Ising problem is practically hard. Brute-force solutions for searching
for the ground state, which amounts to computing the diagonal elements of C,
require 2n function evaluations. The problem is discrete, so that classical meth-
ods [70, 71, 72] typically solve only approximated or relaxed version of it.
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3.3.2 Formulation as QUBO Problem

An equivalent and very frequently encountered formulation of the Ising problem
is the formulation as Quadratic Unconstrained Optimization (QUBO) problem.
In this formulation, instead of spin variables, one solves over binary variables
X := {x1, . . . , xn}with xi ∈ {0, 1} a problem of the form

arg min
X∈{0,1}n

n∑

i=1

Diixi +
∑

1fi<jfn

Dijxixj + C, (125)

with

Dii := 2

(

Cii −
n∑

j=i+1

Cij −
i∑

j=0

Cii
)

, Dij := 4Cij, C := −
n∑

i=1

Cii +
∑

1fi<jfn

Cij.

This is obtained by the change of variables si = 2xi − 1.

The more concise form
arg min

x∈{0,1}n
x¦Dx, (126)

which assumes that x is a binary vector, is also very frequently used for QUBOs.

The minimizers of the two formulations Equation (119) and Equation (125) have
the same binary configuration, however, their objective function values differ by
the offset C. In the QUBO formulation, the binary terms Dij and unary terms Dii
are commonly called couplers and biases.

3.3.3 Maximum Cut Problem

With the special choice Cii = 0 for all i, problem Equation (119) reduces to the
so-called weighted maximum cut (MaxCut) problem [70]. In the MaxCut prob-
lem, we are interested in partitioning the set S of nodes of the graph into two
subsets S1 and S2 such that the weighted sum of edges between the two subsets
is maximal.

Assigning to each partition a binary vector x ∈ {0, 1}n where xi = 1 if si ∈ S1 and
xi = 0 if si ∈ S2, the weighted maximum cut is the partition that solves the problem

arg max
x∈{0,1}n

J (x), J (x) :=
n∑

i,j=1

Cijxi(1− xj). (127)

By setting si = 2xi − 1, we can reformulate problem (127) as

arg max
S∈{−1,1}n

n∑

i,j=1

1

2
Cij(−sisj + si − sj + 1), (128)
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x1

x2

x3

x4

(

Figure 3.3.1: Illustration of the maximum cut problem. The problem is to partition the
nodes of the graph into two subsets such that the weighted sum of edges between the two
subsets is maximal.

which is, up to a constant offset and a scaling factor, equivalent to the problem

arg min
S∈{−1,1}n

n∑

i,j=1

Cijsisj. (129)

The symmetry Cij = Cji allows to write problem (129) as

arg min
S∈{−1,1}n

∑

1fi<jfn

Cijsisj, (130)

which is nothing else than a special form of problem (119). Thus, solving the
Ising problem with Cii = 0 for all i is equivalent to finding the maximum cut of
a given graph. By flipping the sign of all the couplers Cij , the problem turns into
what is known as weighted minimum cut problem.

Example : As an example, we consider the graph in Figure 3.3.1 with cost values given
by C12 = C23 = C34 = C41 = 1 and Cij = 0 for all i, j = 1, . . . , 4 and j ̸= i + 1 mod 4. We
can evaluate the objective function according to Equation (127) as

J (0000) = J (1111) = 0 (131)

J (1000) = J (0100) = J (0010) = J (0001) = 2 (132)

J (0011) = J (1100) = J (0110) = J (1001) = 2 (133)

J (0111) = J (1011) = J (1101) = J (1110) = 2 (134)

J (0101) = J (1010) = 4, (135)

and we read out that maximizers for this problem instance are x⋆ = 1010 or x⋆ = 0101
and J (x⋆) = 4.
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3.3.4 Application Examples

The Ising model finds practical applications in varying fields such as computer
vision [73], data clustering [74], and communications network design [75]. Ref-
erence [76] also provides more examples of how to apply the Ising model for
modelling many practically relevant NP-problems. In the following, we provide
some applications of the Ising model for modelling ferromagnetism in statistical
mechanics, as well as combinatorial problems in image processing.

Ferromagetism.

The Ising model is a powerful tool describing a simplified 2D model of ferromag-
netism in statistical mechanics [69].

The couplers Cij describe the interaction field between spin systems i and j, it
is non-zero only if i and j are neighboring particles. The biases Ci indicate the
external magnet field applied to each particle i. Spins can be up (↑), or down
(³). Once excited and then left to rest, ferromagnetic objects tend towards a low-
energy configuration of the spins:

• If Cij > 0, the system prefers anti-aligned neighboring spins i and j (e.g., ↑³
or ³↑). The neighbors i and j are said to be anti-ferromagnetic. If Cij < 0,
aligned neighbors i and j are preferable, and they are said to be ferromag-
netic.

• If Ci > 0, the system favors a down-spin si; conversely an up-spin if Ci < 0.

In practice, a major factor in the evolution of the spins is also the temperature of
the experimental environment.

Chan-Vese Segmentation.

The Ising model is a one-to-one translation of a binary image segmentation prob-
lem. This segmentation approach was first introduced by Greig et. al. [77] in the
image processing context and later developed into what is now known as the
Chan-Vese-model [78].

Considering a discretized image represented as a vector g ∈ R
n, where each com-

ponent represents an intensity value for one of n discrete points in the image
domain.

It is assumed that the conditional densities of the intensities p(gi|xi) are known,
i.i.d., and normally distributed with mean ci ∈ R and variance Ã2

i ∈ R:

p(gi|xi = 0) = N (gi; c0, Ã
2
0), and p(gi|xi = 1) = N (gi; c1, Ã

2
1). (136)

In order to encourage smoothness of the region boundaries, an a-priori distribu-
tion of the variable x is incorporated. A typical simple model is

p(x) := exp

(

−
∑

i∼j

1

2
|xi − xj|

)

, (137)
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where the relation ∼ denotes neighboring pixels.

With these assumptions, a maximum-a-posteriori (MAP) estimation can be per-
formed for x, maximizing the conditional probability p(x|g):

x⋆ := arg max
x∈{0,1}n

p(x|g). (138)

Taking the monotonicity of the logarithm into account and using the Bayes rule,
one can write

x⋆ = arg min
x∈{0,1}n

− log
p(g|x) · p(x)

p(g)
, (139)

which leads to

x⋆ = arg min
x∈{0,1}n

n∑

i=1

1

2

(
(gi − c1)2 − (gi − c0)2

)
xi +

∑

1fi<jfn

1

2
¼ijxixj, (140)

where ¼ij is strictly positive and constant if i and j are neighboring points, and
zero if they are not. Equation (140) is nothing else than a QUBO or equivalently
an Ising problem.

Discussion.

In the ferromagnetism and segmentation examples, the couplers are typically
sparse, as they are non-zero only for neighboring particles. For such examples,
see Figure 3.3.2, a relatively simple method that is close to the physical evolu-
tion is the Metropolis-Hastings algorithm [79]. It works as follows: The system
starts in a random configuration of the spin lattice. At each time step, a spin
si is randomly chosen from the lattice an its contribution ei to the cost is evalu-
ated. If ei > 0, the spin si is flipped, otherwise it is flipped with a probability
exp(ei · t), where t is a user controllable parameter. The parameter t models the
room temperature, as some physical system change their magnetic phase with
the temperature.

It is worth pointing out that other more efficient classical methods for solving the
Ising, under some specific assumptions, problem also exist: If the couplers Cij are
positive, the problem can be turned into a sub-modular optimization problem
and solve with graph cut techniques [80, 73]. References [81, 82] also provide
extensive review of combinatorial optimization algorithms.

3.3.5 Quantum Annealing on D-Wave Machines

D-Wave [8] quantum annealers are intermediate-scale devices conceived for solv-
ing Ising problems based on the AQC optimization principle. Recall from Defi-
nition 2.5.1 that the AQC model relies on an evolving Hamiltonian

H(s) = A(s)H(0) + B(s)H(1) (141)
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Figure 3.3.2: Example applications of the Ising model, with approximate solutions
computed using the Metropolis–Hastings algorithm. (Top row) Illustration of a 2-
dimensional ferromagnetic lattice. Each qubit corresponds to one particle in the lattice
and the spin configuration is obtained by solving the Ising problem with Cii = 0 for all
i and Cij = 1 for all neighboring pixels i, j, so that neighboring particles prefer to align.
The lattice (left) is randomly initialized and, under a certain critical temperature, con-
verges (left to right) towards a state where each pixel takes the state of its neighbors – the
material self-magnetizes. (Bottom row) When modifying the biases Cii and couplers Cij
to match the Chan-Vese model in Equation (140) for a given image (left), the randomly
initialized Ising lattice converges to a segmented image (middle and right). The presented
segmentation results correspond to different values of the regularization terms ¼ij . The
larger the regularization term (middle to right), the more neighboring pixels tend to align.

where it is assumed that the ground state of the initial Hamiltonian H(0) is easy
to prepare, and, according to the adiabatic theorem, Theorem 2.5.1, should evolve
to the ground state of the problem Hamiltonian H(1).

On D-Wave machines, the initial Hamiltonian is H(0) = B with

B :=

n∑

i=1

Xi, (142)

where, as above, Xi denotes the Pauli-X operator acting on the i-th particle of the
system. The ground state of B is the equal superposition state |+ð¹n.

The problem Hamiltonian H(1) is the Ising Hamiltonian C from Equation (120),
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| + ð | + ð | + ð | + ð · · · | + ð| + ð | + ð | + ð | + ð · · · | + ð| + ð | + ð | + ð | + ð · · · | + ð

|→ð |→ð |→ð |→ð · · · |→ð|→ð |→ð |→ð |→ð · · · |→ð|→ð |→ð |→ð |→ð · · · |→ð
|¸ð |·ð |·ð |¸ð · · · | ↑ ð|¸ð |·ð |·ð |¸ð · · · | ↑ ð|¸ð |·ð |·ð |¸ð · · · | ↑ ð
| ³ ð |↖ð | ↑ ð | ³ ð · · · | ↑ ð| ³ ð |↖ð | ↑ ð | ³ ð · · · | ↑ ð| ³ ð |↖ð | ↑ ð | ³ ð · · · | ↑ ð

...

| ³ ð | ↑ ð | ↑ ð | ³ ð · · · | ↑ ð| ³ ð | ↑ ð | ↑ ð | ³ ð · · · | ↑ ð| ³ ð | ↑ ð | ↑ ð | ³ ð · · · | ↑ ð

s = 0s = 0s = 0

s = 1s = 1s = 1

| 0 ð | 1 ð | 1 ð | 0 ð · · · | 1 ð| 0 ð | 1 ð | 1 ð | 0 ð · · · | 1 ð| 0 ð | 1 ð | 1 ð | 0 ð · · · | 1 ð

Figure 3.3.3: An illustration of quantum annealing; image adapted from [83]. (Top to
bottom) All qubits in the quantum system start in a perfect superposition state |+ð,
illustrated as |→ð. In the annealing process, as the time s evolves from 0 to 1, the qubits
are subjected to magnetic fields and tend to adopt a state configuration that globally
minimizes the system’s energy. (Bottom) At the end of the evolution, their final state is
read out and returned as the solution of an optimization problem.

i.e.,

C :=

n∑

i=1

CiiZi +
∑

1fi<jfn

CijZiZj, (143)

where, as the name suggests, the couplers and biases Cij and Cii are problem
specific.

Programming on D-Wave machines consists in defining couplers and biases of a
problem and sending them to a quantum processing system using a web-based
API. The quantum processor creates a network of logical qubits according to the
problem size, which is embedded in the quantum hardware. An intuitive under-
standing is provided in Figure 3.3.3. The network starts in a global superposition
of all possible basis states. In a process called annealing, as the time s evolves
from 0 to 1, the provided couplers and biases are changed into magnetic fields
that deform the state landscape, emphasizing the state that is most likely the so-
lution of the underlying optimization problem.

Discussion.

D-Wave is a programmable machine which allows the user to define problem
specific couplers and biases. Not only problem parameters, but also solver pa-
rameters are programmable on D-Wave machines. A non-exhaustive list of pro-
grammable solver parameters include:

• Number of shots.
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As mentioned earlier in Section 2.2.3, quantum measurement is a proba-
bilistic experiment. A single shot provides a single basis-state. In order to
approximate the probability on the system for being in a specific state, one
needs to repeat the experiment several time and to aggregate the results.
The state with the lowest energy is returned as the solution of the submit-
ted problem. D-Wave allows the user to define the number of shots.

• Chain strength.

The embedding of the logical problem onto the quantum hardware often
faces the sparse qubit connectivity problem. In order to create non-existing
connections, the QPU chains a set of physical qubits by setting the strength
of their connecting couplers high enough to strongly correlate them. Physi-
cal qubits in a chain correspond to the same logical qubit. In case of a chain
breakage, the state of the logical qubit is determined by a majority vote of
the qubits in the chain. The strength of the chain on D-Wave can be specified
by the user.

• Total annealing time.

The default annealing time of one shot on D-Wave is 20µS. However, as
discussed and known from Theorem 2.5.1, this should be set depending on
the spectral gap. Though the spectral gap is difficult to compute in general,
D-Wave allows to change the annealing time.

• Annealing functions.

The default annealing functions A(s) and B(s) presented in Figure 3.3.4 are
available on D-Wave, but could be customize as well. 2

While being an efficient scheme for combinatorial optimization that has the po-
tential to ultimately super-cede classical computers, AQC has a deficiency. As
discussed in Section 2.5, the smaller the energy gap between the ground state and
the first excited state of the adiabatic Hamiltonian H(s), the longer the required
annealing time for guaranteeing the success of the optimization [3, 37, 84].

3.4 Conclusion

On take-away of this chapter is that many classical optimization routines can be
effectively employed in a hybrid quantum-classical regime to train the parame-
ters of parameterized circuits for specific goals. Moreover, we observed that a
significant class of quantum objective functions allows for the evaluation of ex-
act analytical gradients on quantum platforms, facilitating the use of classical
gradient-based solvers. Furthermore, we reviewed adiabatic quantum comput-
ing for solving combinatorial problems, as implemented by D-Wave machines.

2The D-Wave functions A(s) and B(s) correspond to the A(s) and B(s) functions of this thesis.
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Figure 3.3.4: Default annealing functions, see Equation (141), on D-Wave machines,
image taken from [8]. The function A(s) monotonically decreases, taking the system
away from the eigenstates of the initial Hamiltonian H(0), whilst B(s) increases to take
the system into an eigenstate of the problem Hamiltonian H(1).

In the realm of image processing, particularly as discussed in Chapters 4 and 6,
this integration of classical and quantum approaches opens up promising av-
enues to enhance optimization tasks, providing innovative solutions and im-
proved performance.
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CHAPTER 4

A Variational Quantum Algorithm for Ising problems

We consider an undirected n-vertices graph G = (S, E , C) with S = {s1, . . . , sn},
E ¦ S × S and a cost function C : E → R with C(si, sj) := Cij on E . The purpose
of this chapter is, using variational quantum methods (Chapter 3), to

minimize
|qð

ïq|C|qð

subject to |qð =
n⊗

i=1

|qið , qi ∈ {0, 1} ,
(144)

where

C =

n∑

i=1

CiiZi +
∑

1fi<jfn

CijZiZj (145)

is the Ising Hamiltonian. In essence, the goal is to prepare a ground state |q⋆ð of
C.

The chapter begins with a review of relevant literature. Then, the new approach is
presented, which includes the construction and optimization of a parameterized
quantum circuit encoding the problem. Experiments are conducted at the end
of the chapter to validate and benchmark the method against the state-of-the-art
quantum approximate optimization algorithm and D-Wave quantum annealers.
The approach discussed in this chapter is a quantum-classical hybrid. In con-
trast, in Chapter 5, we will approach the problem with fully universal quantum
amplitude amplification techniques.

The chapter builds on the following author’s publications:
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• Kuete Meli, N., Mannel, F., and Lellmann, J. “A universal quantum algo-
rithm for weighted maximum cut and Ising problems”, Quantum Inf Process
22, 279 (July 2023). https://doi.org/10.1007/s11128-023-04025-x.

4.1 Related Work
The Quantum approximate optimization algorithm (QAOA), firstly introduced
by Farhi et al. [85] and widely discussed in the literature [86, 87, 88, 89] is a uni-
versal algorithm mimicking the AQC computational model. Problem (144) is
approximated by finding a state |Èð = ∑

q ³q |qð such that ïÈ|C|Èð is minimized.
QAOA uses techniques presented in Section 2.6 and solves the Ising problem by
trotterizing the evolution generated by Equation (141). Its pseudo-code is recapit-
ulated in Algorithm 4.1.1 and its circuit in Figure 4.1.1:

Algorithm 4.1.1 (Quantum Approximate Optimization Algorithm [85])

Input: Weighted graph G = (S, E , C), layer depth p ∈ N,
and initial parameter vector (µ1, . . . , µp, ´1, . . . , ´p)init.

Output: Minimizer |Èð = |µ, ´ð of problem (144).

Initialize parameter (µ, ´)← (µ1, . . . , µp, ´1, . . . , ´p)init
while stopping criteria not met do

Initialize quantum system in state |+ð =
√
2−n

∑2n−1
q=0 |qð.

Prepare |µ, ´ð := U(B, ´p)U(C, µp) · · ·U(B, ´1)U(C, µ1) |+ð¹n.
Measure |µ, ´ð in the computational basis.
Classically compute ïµ, ´|C|µ, ´ð.
Update (µ, ´) using a classical optimizer to obtain (µ, ´)new.

end while
Return: |Èð = |µ, ´ð.

First, the system is prepared in the perfect superposition state |+ð¹n. Then, trot-
terization consists in choosing a depth p and repeatedly – p times – applying to the
state the unitaries U(C, µk) := exp(−iµkC) and U(B, ´k) := exp(−i´kB) gener-
ated by the problem Hamiltonian C and a so-called mixing Hamiltonian B as defined
in Equation (142). The (small) time steps µk, ´k ∈ R, 1 f k f p, are optimization
parameters in QAOA. The resulting state is called |µ, ´ð:

|µ, ´ð := U(B, ´p)U(C, µp) · · ·U(B, ´1)U(C, µ1) |+ð¹n . (146)

Repeated measurements in the computational basis are performed to estimate
the state |µ, ´ð =∑q ³q |qð, which subsequently classically serves to evaluate the
objective function

ïµ, ´|C|µ, ´ð =
∑

q

³q ïq|C|qð . (147)

If required by the classical solver, the derivatives of the objective function may
be calculated as well. The solver subsequently updates the parameter vector
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. . .

. . .

. . .

|0ðq1 H

U(C, µ1)

Rx(´1)

U(C, µp)

Rx(´p)

|0ðq2 H Rx(´1) Rx(´p)

|0ðqn H Rx(´1) Rx(´p)

. . .

. . .

. . .

|0ðq1 Rz(µ1 · C11)

|0ðq2 Rz(µ1 · C22) Rz(µ1 · C12)

|0ðqn Rz(µ1 · Cnn) Rz(µ1 · C1n)

Figure 4.1.1: A depth-pQAOA ansatz circuit. (Top row) The complete circuit. First, the
uniform superposition state |+ð¹n is prepared by applying a Hadamard gate to each qubit.
Next, the state |µ, ´ð is prepared by transforming |+ð¹n by p layers of parameterized
unitary operators U(C, µk) and U(B, ´k). (Bottom row) A zoom-in on the first unitary
U(C, µ1). Finally, |µ, ´ð is measured in the computational basis and used in a classical
optimization routine to output the ground state |q⋆ð of the in-puted Hamiltonian with
high probability.

(µ, ´) := (µ1, . . . , µp, ´1, . . . , ´p). The process is repeated until stopping criteria
are met.

There have been several discussions on the improvement of the performances
of QAOA, ranging from the choice of the mixing Hamiltonian B, to that of the
initial parameters. Bärtschi and Eidenbenz [90] proposed Grover mixers to relate
the initial state to the mixig Hamiltonian. Wang et al. [91] proposed XY mixers
that allows, if applicable, to encode some hard constraints into the simulated
quantum evolution. A more recent work by [92] shows that best performances
of the algorithm are obtained when the initial state of QAOA is set to be the
ground state of the mixing Hamiltonian. Other recent work [93] proposed to use
solutions of continuous-valued classical relaxations of the problem to initialize
the parameters, a technique known as warm-start.

Discussion.

For p → ∞ the results of [85] guarantee that there exist parameters (µ, ´) for
which measuring |µ, ´ð gives the desired ground state |q⋆ð with high probabil-
ity. However, the QAOA objective is difficult to optimize [86, 88, 89]. We believe
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that this is partially due to the fact that the QAOA ansatz encodes problem in-
formation in the argument of exp as phases of the qubits, which is partially lost
at the measurement. Another issue of QAOA is that its repetitive layers are still
too expensive for running on current and near-term devices. In this work, we
propose a quantum circuit that encodes the problem more effectively and does
not require the repetitive layers of QAOA. Adhering to the promising concept of
designing hybrid quantum algorithms, we embed the circuit in a classical opti-
mization method to output the desired ground state |q⋆ð with high probability.

4.2 Proposed Variational Quantum Optimization

In this section, we aim, in a hybrid quantum-classical optimization regime, for an
efficient way to search for parameters ¹ ∈ Θ that solve the variational problem

minimize
¹∈Θ

L(¹), L(¹) := ïÈ(¹)|C|È(¹)ð , (148)

where Θ is a suitable parameterization of the search space. VQE-like methods
(VQE[54], QAOA[85]) minimize the same energy functional by only preparing
the ansatz |È(¹)ð on a quantum computer and evaluating the objective function
classically. In contrast, our contribution enables to evaluate even the objective
function on the quantum machine, reducing the dependence on classical compu-
tation – only the optimization update will be carried out classically.

4.2.1 A Block-Encoding Framework for the Ising Hamiltonian

Our method builds on the notion of block-encoding introduced in [94, 95], which
allows to embed non-unitary matrices as the principal block of a unitary operator
acting on the quantum system. Block-encoding is typically achieved by enlarging
the Hilbert space of the quantum system.

Definition 4.2.1 (Block-encoding [94, 95])

Let a, n ∈ N and m := a+n. The m×m unitary U is said to be a block-encoding
of the n× n matrix C if there is » ∈ (0,∞) such that

»C =
[
ï0|¹a ¹ In

]
U
[
|0ð¹a ¹ In

]
. (149)

In other words, »C is the top left block of the unitary U:

U =
(

»C ⋆
⋆ ⋆

)

. (150)

By adding a single qubit to the system, our goal is to implement the (21+n)×(21+n)
unitary operator

U := U(C, a, b) :=

(

cos(Ĉ) − sin(Ĉ)
sin(Ĉ) cos(Ĉ)

)

, Ĉ := aC+ bI, (151)
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for the Ising Hamiltonian C from Equation (145) and suitably chosen constants
a, b ∈ R. We use a, b to re-scale and shift all entries of C into an interval I ¢ [0, Ã],
where the cosine function is strictly monotone and invertible. As C is a diagonal
matrix, the sine and cosine functions directly apply to the diagonal elements [12,
Section 2.1.8]. Specially, Equation (151) block-encodes a bijective transformation
of C. In Section 4.2.3, we provide suitable choices for a and b.

The purpose of introducing the unitary U in Equation (151) is to encode informa-
tion about the problem directly in probability amplitudes of the qubits. The uni-

tary U operates on a (1+n)-qubit system prepared in the state |È̂, Èð := |È̂ðc¹|Èð,
where |È̂ðc = ³ |0ðc + ´ |1ðc is a 1-qubit register which we call the cost qubit and
|Èð is the n-qubit working register. As required by the block-encoding concept

in Definition 4.2.1, as long as the cost qubit |È̂ðc is kept in the |0ðc state, it holds

ï0, È |U | 0, Èð =
〈

È
∣

∣

∣
cos(Ĉ)

∣

∣

∣
È
〉

. (152)

Therefore, if a, b are chosen such that the entries of the modified matrix Ĉ fit
inside the monotone region of the cos-function, then, solving Equation (144) is
equivalent to

minimize
|qð

ï0, q|U|0, qð

subject to |qð =
n

⊗

i=1

|qið , qi ∈ {0, 1} ,
(153)

where now U is a unitary matrix that directly serves as quantum gate.

Implementing the Block-Encoding Circuit.

Our main contribution lies in a circuit-compatible implementation of the operator
U:
Lemma 4.2.1 (Block-encoding of the Ising Hamiltonian)

Let a, b ∈ R. Given the Ising Hamiltonian C in Equation (145), the block encod-
ing matrix U(C, a, b) in Equation (151) acting on a cost qubit |0ðc and a basis state
|qð =

⊗n
i=1 |qið can be implemented as a product of controlled unitary operations

U(C, a, b) =

n
∏

i=1

X
qi ·Ry(2aCii) ·Xqi ·

∏

1fi<jfn
X
qi+qj ·Ry(2aCij) ·Xqi+qj ·Ry(2b)¹ I

¹n. (154)

Proof : Observe that U in Equation (151) is a block matrix of diagonal matrices. Apply-
ing it to the basis state |0, qð gives the same result as applying to the cost qubit |0ðc the
controlled (2× 2)-operator

U2×2(q) :=

(

cos(ïq|Ĉ|qð) − sin(ïq|Ĉ|qð)
sin(ïq|Ĉ|qð) cos(ïq|Ĉ|qð)

)

, (155)
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where
ïq|Ĉ|qð = a ïq|C|qð+ b (156)

is the scaled and shifted version of the objective function value

ïq|C|qð =
n
∑

i=1

(−1)qiCii +
∑

1fi<jfn
(−1)qi+qjCij (157)

of the state |qð according to the Ising model in Equation (145).

Operator U2×2(q) performs a rotation of the cost qubit about the angle ïq|Ĉ|qð around
the y-axis in the Bloch sphere. Therefore, the unitary U(C, a, b) can be written as

U(C, a, b) = Ry

(

2 ïq|Ĉ|qð
)

¹ I
¹n (158)

= Ry

(

2a ïq|Ĉ|qð+ 2b
)

¹ I
¹n (159)

= Ry

(

2a ïq|Ĉ|qð
)

·Ry(2b)¹ I
¹n. (160)

The last equation is obtained by applying the identity Ry(¹1 + ¹2) = Ry(¹2) · Ry(¹1) for
rotations in two dimensions, where ¹1, ¹2 ∈ R.

By recursively applying the above mentioned rotation identity to Equation (157), to de-

compose the Ry(2a ïq|Ĉ|qð) term, we get

U(C, a, b) =

n
∏

i=1

Ry

(

(−1)qi2aCii
)

·

∏

1fi<jfn
Ry

(

(−1)qi+qj2aCij
)

·Ry(2b)¹ I
¹n. (161)

Further, by matrix multiplication, one can verify that for all ¹ ∈ R and qi ∈ {0, 1}, it holds
Ry ((−1)qi¹) = X

qi ·Ry (¹) ·Xqi . Applying this to Equation (161) yields

U(C, a, b) =

n
∏

i=1

X
qi ·Ry(2aCii) ·Xqi ·

∏

1fi<jfn
X
qi+qj ·Ry(2aCij) ·Xqi+qj ·Ry(2b)¹ I

¹n, (162)

which concludes the proof.

As a result, the weighted sum of Pauli-Z operators of the Ising Hamiltonian nat-
urally translates into a product of unitary transformations, which is very compat-
ible with the gate-based model of quantum computing. For any given superpo-
sition state |Èð =

∑

q ³q |qð, we have ï0, È |U | 0, Èð =
∑

q |³q|
2 cos(a ïq|C|qð + b).

For a basis state |È̂, Èð = |0, qð, we can even recover the exact objective function
value by ïq|C|qð = 1

a
(arccos ï0, q|U|0, qð − b).

The operator U is implemented using the circuit given in Figure 4.2.1:
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Quadratic terms Unary terms

Cost qubit
|È̂ð

c
= Ry(2b) |0ð

| È̂ ðc Ry(2aCij) Ry(2aCii)

Working qubits
| · ðqi
| · ðqj

Figure 4.2.1: Implementation of the (21+n)× (21+n) operator U in Equation (154). The

cost qubit is initialized in the state |È̂ðc = Ry(2b) |0ð and is the target of all operations.
Note that this does not contradict the idea of keeping it in the |0ð-state, as the operation
Ry(2b) implements the last part of U. (Left For each coupling edge of weight Cij between
nodes qi and qj , rotate the cost qubit by Ry(2aCij) if their corresponding working qubits

are in the same state, else by Ry(−2aĈij) = X · Ry(2aCij) · X. (Right For each unary
edge of weight Cii involving node qi, rotate the cost qubit byRy(2aCii) if its corresponding

working qubit is in the |0ð-state, else by Ry(−2aĈii) = X ·Ry(2aĈij) ·X.

• We initialize the cost qubit in the state |È̂ðc = Ry(2b) |0ð.
• For each weight Cij between two nodes qi and qj , we rotate the cost qubit

by Ry(2aCij) if the corresponding working qubits are in the same state, and

rotate by Ry(−2aĈij) = X ·Ry(2aCij) ·X if they are not.

• For each unary weight Cii involving node qi, we rotate the cost qubit by
Ry(2aCii) if the corresponding working qubit is in the |0ð-state, and rotate

by Ry(−2aĈii) = X ·Ry(2aCii) ·X if it is not.

Whenever the unary costs satisfy Cii = 0 for all i, we refer to Equation (154) as
the Universal Quantum Maximum Cut (UQMaxCut) model, else as the Universal
Quantum Ising (UQIsing) model.

4.2.2 The Parameterized Quantum Circuit

The overall architecture of our algorithm is outlined in Figure 4.2.2. The com-
plete circuit consists of 3 registers: a 1-qubit register containing an ancilla qubit,
another 1-qubit register for the cost qubit, and an n-qubit register for the working
qubits encoding the variables of the problem.

First, the working qubits are rotated by a set of angles ¹ = (¹1, . . . , ¹n) ∈ R
n,

constructing the ansatz

|È(¹)ð := Ry(¹1)¹ · · · ¹Ry(¹n) |Èð , (163)

from a system previously prepared in the state |Èð. Each qubit qi, representing
the i-th node of the graph, is rotated by ¹i around the y-axis. Next, a Hadamard
sandwich involving a controlled version of the U-operator is applied to the an-
cilla qubit. Finally, the ancilla qubit is measured, leaving the cost and working

qubits in the state U |0, È(¹)ð = |0ðc ¹ cos(Ĉ) |È(¹)ð+ |1ðc ¹ sin(Ĉ) |È(¹)ð.
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U(C, a, b) U |0ð |È(¹)ð

Working qubits |Èðq Ry(¹)

CLASSICAL OPTIMIZER

Gradient method:
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Optimization step:
Vanilla, ADAM, COBYLA, . . .

Update:
¹ ← ¹(new) := ¹(new)(ïUð)
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Figure 4.2.2: Overview of the proposed algorithm for the Universal Quantum MaxCut and Ising Model (UQMaxCut and UQIsing).
First 1⃝, the cost (node and edge weight) information for the given graph are used to implement the operator U(C, a, b) that block-
encodes the problem Hamiltonians. This operator is applied to a trial state made up of the variational ansatz |È(¹)ð and the cost qubit.
Second 2⃝, using the principle of implicit measurement, the expectation ïUð = ï0, È(¹)|U|0, È(¹)ð, which equals the objective L(¹),
is approximated by measuring several copies of the circuit. This computed expectation and eventually its gradient are iteratively used
in a classical optimization routine which drives the parameterized state |È(¹)ð towards the state |È(¹⋆)ð that potentially gives the global
minimal cost value. Finally 3⃝, the optimal state |È(¹⋆)ð is measured in the computational basis, and the most frequently measured
state is returned.
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Our goal is to solve the variational problem

minimize
¹∈Rn

L(¹), L(¹) = ï0, È(¹)|U|0, È(¹)ð , (164)

i.e., to find a set of angles ¹⋆ such that |È(¹⋆)ð = |q⋆ð. As derived in the next
section, the objective function L(¹) can be calculated by L(¹) = p(0)−p(1), where
p(0) and p(1) are the probabilities of measuring the ancilla qubit in the |0ð and |1ð
state. This allows us to compute the expectation ïUð without having to measure
ï0, È(¹)| needed for the inner product.

Optimizing the Circuit.

The circuits (UQMaxCut, UQIsing) are optimized by normalized gradient de-
scent [47, 48] with decreasing step size, with gradients computed by the parame-
ter shift rule [62]. At each iteration k, our update rule reads

¹(k) ← ¹(k−1) −
[

Ãn

2

]1/2

exp

[

− 4k2

k2max

]

· ∇¹L(¹(k−1))

∥∇¹L(¹(k−1))∥2
. (165)

The design of the update rule Equation (165) is motivated by the following con-
sideration: We know that we produce bit-strings by either flipping |qið or not,
thus ¹⋆i = ℓÃ, ℓ ∈ Z. At iteration k = 0, the update rule Equation (165) allows each
¹i to get updated to ¹1i ← ¹0i ± Ã · gi/2, where gi ∈ [−1, 1] is the normalized con-
tribution of ¹0i in the objective function value L(¹(k−1)). Subsequently, we let the
step size decay exponentially to zero when approaching the maximum number
of iterations kmax. Given the noisy nature of quantum measurement, it is helpful
that this frees us from the difficult task of determining a stopping condition for
the algorithm.

Evaluating the Cost Function.

The objective function is evaluated using the so-called Hadamard test [96]: Let U
be a unitary operator. The measurement of the first qubit of the circuit in Fig-
ure 4.2.3 in the computational basis performs a measurement of the real part
Re (ïÈin |U |Èinð) of the expectation of U on the second register.

|Èoutð

|0ð H H

|Èinð U

Figure 4.2.3: Circuit illustrating the Hadamard test.

To see this, we define operators

P± :=
1

2
(I±U). (166)
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Evidently, it holds

P± =
1

4

(

I±U±U
 +U

 
U
)

and P
 
+P+ −P

 
−P− =

1

2

(

U+U
 ) . (167)

Before measurement, the system is in the state

1

2

[

(|0ð+ |1ð)¹ I |Èinð+ (|0ð − |1ð)¹U |Èinð
]

(168)

= |0ð ¹P+ |Èinð+ |1ð ¹P− |Èinð . (169)

A measurement of the first qubit in the computational basis, with the measure-
ment operators P0 = |0ð ï0| ¹ I and P1 = |1ð ï1| ¹ I, yields the probabilities

p(0) =
〈

Èin

∣

∣

∣
P

 
+P+

∣

∣

∣
Èin

〉

and p(1) =
〈

Èin

∣

∣

∣
P

 
−P−

∣

∣

∣
Èin

〉

. (170)

Then, we compute the difference

1 · p(0) + (−1) · p(1) =
〈

Èin

∣

∣

∣
(P 

+P+ −P
 
−P−)

∣

∣

∣
Èin

〉

(171)

=
1

2

〈

Èin
∣

∣

(

U+U
 ) ∣
∣Èin

〉

(172)

=
1

2

(

ïÈin |U |Èinð+
〈

Èin
∣

∣U
 ∣
∣Èin

〉)

(173)

= Re (ïÈin |U |Èinð) . (174)

Since in our application, c.f. Equation (152), the state |Èinð always has the form

|Èinð = |0, Èð, it holds ï0, È |U | 0, Èð = ïÈ| cos(Ĉ)|Èð ∈ R. Hence

Re (ïÈin |U |Èinð) = ïÈin |U |Èinð . (175)

Thus, we can approximate the objective function by measuring a single qubit.
This is a crucial feature of our algorithm, as it makes it possible, having U |Èinð to
approximate the scalar product ïÈin |U |Èinð without having to sample |Èinð.

A Note on the Accuracy of Objective Function Evaluation.

The Hadamard test differs from projective measurements and often requires more
measurement shots to accurately approximate the objective function value.

Each measurement outcome yields±1. Thus, while performingM shots on a sin-
gle qubit and computing the expectation, as done in the Hadamard test, we can
only hope to represent at most M different objective values. However in Equa-

tion (152), we saw that for a basis state |qð it holds ï0, q|U|0, qð = ïq| cos(Ĉ)|qð.
Hence, measuring on a basis state produces an eigenvalue of cos(Ĉ). Accurately
approximating these eigenvalues would require to perform a number of mea-

surement shots that equals at least the cardinality of the spectrum of cos(Ĉ).
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Indeed, due to the Hoeffding inequality [97], the measurement error, say ϵ, scales
inversely quadratically with M . It holds

p (|estimated ïUð − effective ïUð| < ϵ) g 1− 2e−Mϵ2/2. (176)

Consequently, if one wants the probability 1− 2e−Mϵ2/2 to equal 1− ¸, one needs
to set M = 2

ϵ2
log(2/¸). See also [98] for a method for improving this bound based

on quantum phase estimation.

4.2.3 Impact of Re-Scaling and Shifting the Costs

When applying the method, it is important to appropriately choose the constants

a, b ∈ R for re-scaling and shifting the costs Ĉ = aC + bI. The goal is to fix a, b

such that diag(Ĉ) ¢ [0, Ã]2
n

. Furthermore, in this interval the costs are reversed
to guarantee that cos(diag(Ĉ)) preserves the relative ordering of the original costs
in diag(C). We set a = − 1

K
· ¼ and b = ¼ with ¼ ∈ [0, Ã/2] and some sufficiently

large K ∈ R+.

The choice is motivated by the following, also illustrated in Figure 4.2.4:

1. The constant K should be large enough to scale the costs into I ¢ [−1, 1]2n .
The multiplication by ¼ ∈ [0, Ã/2] brings them into the interval I ¢ [−Ã

2
, Ã
2
]2

n

.

2. The negative sign of constant a keeps the costs into the interval I ¢ [−Ã
2
, Ã
2
]2

n

,
but reverses the order of the costs such that the minimizer receives the high-
est objective function value and the maximizes the lowest.

3. The shift by the constant b = ¼ brings the costs into the interval I ¢ [0, Ã]2
n

where the cosine is monotonically decreasing. However, the reverse order
of the costs turns the cosine transformed cost in the right order back, pre-
serving the original ordering.

In order to ensure that we remain in the monotonic region of the cosine, it is
tempting to choose a very large K k Cmax := maxkCkk, where Ckk denotes the
k-th diagonal element, i.e., considerably larger than the largest possible objective
function value. However, as K approaches +∞, the operator U(C, a, b) in Equa-
tion (151) approaches I

¹(1+n). This in turn means that the eigenvalues are dis-
tributed over a smaller interval around cos(¼), so more shots are expected in or-
der to accurately separate and distinguish them from each other. Fortunately, in
many problems, a tighter upper bound to the maximal cost Cmax can be computed
from the original weights without knowing C. For example, choosing

K = Cmax :=

n
∑

i=1

|Cii|+
∑

1fi<jfn
|Cij| (177)

suffices to guarantee an equivalent transformation of the initial problem (148)
into the form (164).
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Cmin

Cmax

cos

sin

1−1

Cmax

Cmin

cos

sin

1−1
Cmin Cmax

cos

sin

1−1

1. Scale 2. Invert 3. Shift

Figure 4.2.4: Scaling and shifting the original cost of the Ising Hamiltonian. (Left) A
first operation brings the cost into the interval I ¢ [−Ã

2
, Ã
2
]2

n

. (Middle) A second oper-
ation reverses the order of the costs. (Right) A third operation brings the costs into the
interval I ¢ [0, Ã]2

n

where the cosine is monotonically decreasing. However, the reverse
order of the costs turn the cosine transformed cost in the right order back, preserving the
original ordering.

4.2.4 Scalability and Computational Complexity

For a given graph G = (S, E , C), the circuit construction presented in Figure 4.2.1
requires at most one NOT-gate, |E| single-qubit rotation gates and 4|E|−2|S| CNOT

gates. Note that since the edges can be treated in arbitrary order, two consecutive
CNOT gates having the same control qubit cancel each other out as their product
is the identity, further reducing the number of required CNOT gates.

The controlled-U(C, a, b) gate appearing in Figure 4.2.2 and conditioned by the
ancilla qubit |·ð³ can be fully decomposed into single qubit rotations and CNOT

gates without using any Toffoli gates. To see this, note that it can be expressed as

controlled-U(C, a, b) = I¹U(C, a, b)³ (178)

≡ I¹
n
∏

i=1

X
qi · [Ry(2aĈii)]³ ·Xqi ·

∏

1fi<jfn
X
qi+qj · [Ry(2aĈij)]³ ·Xqi+qj ·X¹ I

¹n. (179)

In particular, in order to control the complete U(C, a, b) gate, it suffices to control
only the rotation gates Ry. This controlled rotation can be decomposed into two
CNOT gates and two single qubit rotations as

[Ry(¹)]
³ = X

³ ·Ry(−¹/2) ·X³ ·Ry(¹/2). (180)

Table 3 summarizes the main differences between UQIsing and a conventional
QAOA of depth p. For p g 3, QAOA requires more quantum resources than our
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QAOA UQIsing [Ours]
# qubits |S| |S|+ 2

# CNOT gates p · (2 |E| − 2|S|) 1 + 6|E| − 2|S|
# single qubits rotations p · (|E|+ |S|) 2 |E|

# Hadamard gates |S| 2
qubit connectivity graph-dependent: |E| − |S| one-to-all: |S|+ 1

Table 3: Resources and complexity comparison of a depth-p conventional QAOA and our
UQIsing model on a graph G = (S, E , C). The set S is the set of vertices. Note that the
set E comprises all the edges of the graph and also includes the “self-loops” for the unary
costs. Our construction requires fewer quantum and classical resources than QAOA for
p ⩾ 3.

UQIsing model. Further, physically mapping the QAOA ansatz onto the quan-
tum hardware has to take into account a graph-dependent qubit connectivity.
For our method, connectivity is independent of the input graph, and only re-
quires that one qubit (the cost qubit) is connected to all other qubits (ancilla and
working qubits).

4.3 Experimental Results

In order to validate the practical usefulness of UQMaxCut and UQIsing, we
benchmark against two state-of-the-art approaches for solving binary combinato-
rial optimization with quantum computing: QAOA for the gate-based model and
D-Wave solvers for the adiabatic model. Random graphs in the experiments are
generated using the PYTHON language package NETWORKX [99]. The unary and
quadratic edge weights are all randomly and uniformly chosen in the range [1, 10]
and the graphs are all fully connected. The gate-based circuits in the experiments
(UQMaxCut, UQIsing, QAOA) are implemented in PYTHON and simulated in a
noise-free framework using the QISKIT library and the IBM-QASM simulator [7].
For the adiabatic model, D-Wave solvers that run on the actual quantum hard-
ware are used. D-Wave quantum annealers are made available through the Leap
quantum cloud service [100], and the D-Wave quantum algorithms can be im-
plemented in Python using the Ocean software [101]. We perform 1024 measure-
ment shots for all gate-based algorithms. On D-Wave [8], the experiment is run
with the default annealing time of 20µs and 50 sample reads on the Advantage
topology.

4.3.1 Benchmark Metrics

We denote by |q⋆ð a ground-truth global minimizer and by |È⋆ð the proposed
(basis) ground state returned by each method (UQMaxCut/UQIsing, QAOA and
D-Wave). In the experiments, we adopt the following two metrics to evaluate the
performance of the methods:
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· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

|0ðq1 H

|0ðq2
|0ðq3

...
|0ðqn

Figure 4.3.1: Entanglement circuit to disambiguate symmetric solutions for MaxCut.
Using this circuit, the optimization is performed only on the last n− 1 variables and the
qubit for the node q1 is kept constant in the state |0ð or |1ð.

• The approximation ratio

r(È⋆) :=
ïÈ⋆|C|È⋆ð − Cmax

Cmin − Cmax
= 1− ïÈ

⋆|C|È⋆ð − Cmin

Cmax − Cmin
(181)

informs about the quality of the result, i.e., how confident the method is
with its solution proposal and how far the cost of this proposal is from the
global minimum Cmin := minkCkk of the cost function, cf. [102, Section E].
All the terms appearing in r are classically evaluated. It holds 0 f r(È⋆) f 1
and r(È⋆) = 1 if and only if È⋆ is a global minimizer.

• The approximation index

i(È⋆) := 1ïq⋆|C|q⋆ð=ïqmax|C|qmaxð (182)

is a Boolean variable that indicates whether the state that is most likely to be
returned by an algorithm is actually a global solution. Here |qmaxð denotes
the state that has the largest probability |³max|2 to be returned by an algo-
rithms. It holds i(È⋆) = 1 if ïq⋆|C|q⋆ð = ïqmax|C|qmaxð and 0 otherwise. Note
that this differs from the usual approach of D-Wave, where the sampled
state with the minimal energy is regarded as the best solution proposal.

4.3.2 Benchmark Results

Symmetric Solutions and Entanglement.

Before discussing the results on the MaxCut problem, it is important to notice
that for MaxCut, solutions always exist in symmetric pairs. Specifically, the ba-
sis states |qð =

⊗n
i=1 |qið , qi ∈ {0, 1} and |q̄ð :=

⊗n
i=1 |1− qið possess the same

objective function values.

In theory, it is possible to reduce the search space and to get rid of this ambiguity
by introducing the entanglement circuit given in Figure 4.3.1 after the rotation
layer in Figure 4.2.2.
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The circuit has the matrix representation

E =
1√
2

















1 1
. . . . .

.

1 1
1 −1

. .
. . . .

1 −1

















, (183)

and the particularity to map the basis state |qð to the prefect superposition state
1√
2
(|qð+|q̄ð) if the first qubit of |qð is 0, or to 1√

2
(|qð−|q̄ð) if the first qubit is 1. Thus,

the entanglement allows to optimize over n − 1 angles instead of n. Without en-
tanglement our method just outputs one of the two possible solutions. However,
it is also easy to rectify this ambiguity without entanglement, for example, by
classically flipping all qubits of the obtained basis state. Therefore, in the ex-
periments, we use UQMaxCut without entanglement; if the algorithm outputs
either one of the two solutions, it is accepted as a global solution and we set the
approximation index to 1.

UQMaxCut vs. QAOA and D-Wave.

For the outer optimization algorithm of the UQMaxCut circuit we use normalized
gradient descent as described in Section 4.2.2. Other optimization algorithms
such as vanilla gradient descent or adaptive moment estimation (ADAM [103])
could be used as well. However, it proved difficult to find a suitable step size
control for these methods, so we leave them for future research.

The QAOA layers depth in the experiments is set to p = +n/2, to allow for a fair
comparison, as then both QAOA and UQMaxCut optimize over approximately
n real variables. We also attempted to optimize QAOA using the same optimizer
as for UQMaxCut, but the results were not competitive. Hence, we also show
the results of QAOA when using a gradient-free optimizer; we used the COBYLA

solver [55] as implemented in the SCIPY library [104].

The results are presented in Figure 4.3.2 for fully-connected graphs of n = 3, 5,
and 10 nodes with strictly positive edge weights. For each n, the results are aver-
aged over 20 graph instances and all algorithms are tested on the same instances.
The angles for UQMaxCut and QAOA are all initialized to zero.

The approximation ratio for the three methods (QAOA, D-Wave, UQMaxCut) is
not adversely affected by the number of variables n, but the approximation in-
dex drops sharply as the size of the problem increases. The gradient-free Cobyla-
optimized version of QAOA performs much better than QAOA with gradient
descent. We conjecture that the gradient-based optimization of QAOA often gets
trapped by saddle points of the QAOA loss function landscape. In contrast, UQ-
MaxCut clearly outperforms the two QAOA variants and challenges D-Wave in
producing good approximate solutions. Furthermore, the approximation index
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Figure 4.3.2: Experimental comparison of the proposed Universal Quantum Max-
Cut (UQMaxCut) algorithm with QAOA and D-Wave. Results are shown for fully-
connected graphs of n = 3, 5, and 10 nodes with strictly positive edge weights, and are
averaged over 20 random graph instances for each n. (Top row) Approximation ratio
(larger is better). The lines represent the averaged ratios over the 20 instances and the
shaded areas indicate the standard deviations. (Bottom row) The approximation index,
i.e., the percentage of instances where a global solution is found. All gate-based methods
(QAOA and UQMaxCut) less frequently return a global solution for larger n. Yet, in
contrast to QAOA, D-Wave and the proposed UQMaxCut also consistently return very
good approximate solutions, i.e., points whose function values are very close to the global
minimal function value.

demonstrates that it returns a global minimizer significantly more often than
QAOA and less often than D-Wave whose architecture is specifically designed
to solve such problems.

UQIsing vs. D-Wave.

For the Ising model, we benchmark the proposed UQIsing algorithm against the
D-Wave annealer, the adiabatic quantum computer specialized in solving this
type of problems. The variational circuit for UQIsing is optimized in the same
way as for UQMaxCut, see Section 4.2.2, with the exception that the initial angles
are set to Ã/2 instead of 0. This change is done in order to start in a perfect
superposition state so that the initial state should not be too distant from the
global solution. In contrary to MaxCut, the solutions are no more symmetric.
The results are depicted in Figure 4.3.3.

Notable differences in performance between UQIsing and D-Wave are consistent
with the MaxCut experiments. Specifically, its high approximation ratio, similar
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Figure 4.3.3: Experimental comparison of the proposed Universal Quantum Ising Model
(UQIsing) algorithm with D-Wave. Results are shown for fully-connected graphs of
n = 3, 5, and 10 nodes with strictly positive edge weights. They are averaged over
20 random graph instances for each n. (Top row) The approximation ratio. The lines
represent the averaged ratios over the 20 instances and the shaded areas indicate the
standard deviations. (Bottom row) The approximation index, i.e., the percentage of
instances where a global solution is found. Our method can compete with D-Wave solvers
in predicting approximate solutions and finding the global minimum for moderate n.

to that of D-Wave, indicates that UQIsing always produces either globally opti-
mal solutions or extremely good approximations thereof. On the other hand, the
approximation index shows that D-Wave identifies a globally optimal solution
more often than UQIsing.

4.4 Conclusion

We have presented a new low-depth quantum circuit for the preparation on a
universal quantum machine of the ground state of the Ising Hamiltonian, which
relates to the MaxCut problem. The resulting universal quantum MaxCut (UQ-
MaxCut) approach outperforms the state-of-the-art quantum approximate opti-
mization algorithms (QAOA) by the lower depth, by the computed approxima-
tion ratios and by a higher probability of outputting optimal solutions. It also
challenges the D-Wave quantum annealers that are specifically designed to solve
such combinatorial problems. On the MaxCut as well as on the Ising model, UQ-
MaxCut and UQIsing achieve better approximation ratios and can compete with
D-Wave in producing globally optimal solutions.

We believe that the proposed approach could enable the design of new hybrid
methods for solving practically-sized problems on universal quantum machines.
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4.4. Conclusion

The next chapter however rely on the novel operator U to design a fully universal
algorithm without the classical outer optimization loop, replacing the latter with
fully universal methods.
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CHAPTER 5

Solving the Ising Problem by Quantum Search

While hybrid quantum-classical method are currently the most practical choice,
they are somewhat unsatisfactory from a theoretical viewpoint and difficult to
analyze due to the mixed computational paradigms. Therefore, in this chapter,
we approach the Ising problem again from a purely quantum viewpoint.

We consider once again an undirected graph G = (S, E , C) with S = {s1, . . . , sn},
E ¦ S × S , and a cost function C : E → R with C(si, sj) := Cij on E . Our purpose
is to employ quantum amplitude amplification methods in order to solve the
problem

minimize
|qð

ïq|C|qð

subject to |qð =
n

⊗

i=1

|qið , qi ∈ {0, 1} ,
(184)

where

C =

n
∑

i=1

CiiZi +
∑

1fi<jfn
CijZiZj (185)

is the Ising Hamiltonian. In essence, the goal is to prepare – with high probability
– a ground state |q⋆ð of C.

We begin this chapter by reviewing some relevant literature, namely, the Grover
algorithm, the related phase matching condition, and the non-Boolean quantum
amplitude amplification (NBAA) algorithm. Building on this, we present a mod-
ified NBAA algorithm and analyze conditions in which it is applicable to the
Ising problem. In the experimental section, the proposed method is benchmarked
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against the original NBAA algorithm and the hybrid quantum-classical method
from Chapter 4.

This chapter was developed during supervision of the following Bachelor thesis,
on which it is partly based:

• Oettinger J. E. “Non-Binary quantum amplitude amplification for discrete
iotimization”, University of Lübeck, Bachelor thesis, supervised by J. Lell-
mann and N. Kuete Meli (October 2023).

5.1 Related Work

5.1.1 Grover’s Quantum Search

The notation and approach in this section follows Brassard et al. [27].

Let n ∈ N, N = 2n and [N ] := {0, 1, . . . , N − 1}. Let f : [N ]→ {0, 1} be a function
partitioning [N ] into solutions and non-solutions. We will call an element q ∈ [N ]
a solution of f if f(q) = 1 and a non-solution otherwise. The set [N ] will be referred
to as database.

The purpose of the quantum search algorithm, as proposed by Grover [6] and
generalized by Brassard et al. [27], is to boost the amplitude of solutions of f in
the expense of that of non-solutions.

Assuming that we start from a known state |0ð := |0ð¹n, any purely quantum
algorithm can be represented as an operator A, which turns the initial state into
a superposition of all the basis states corresponding to possible inputs of f :

|È0ð := A |0ð =
∑

q∈[N ]

³0(q) |qð (186)

Any such operator can be thought of as splitting the set of basis states into |È0ð =
|È+ð + |È−ð, where |È+ð is a superposition of solutions and |È−ð that of non-
solutions. Now, let a be the probability that the measurement of |È0ð yields a
solution, i.e.,

ïÈ+|È0ð = ïÈ+|È+ð =: a (187)

ïÈ−|È0ð = ïÈ−|È−ð =: 1− a. (188)

Suppose that f is a black box and we repeat the process of running A, performing
a measurement and requesting f to check whether the measured outcome is a
solution. On average, it will take O(1/a) evaluations of f to find a solution.

Grover’s algorithm achieves this same goal by applying on average O(1/√a)
times the operator A, its inverse A

 , and a so-called quantum oracle, a gate ca-
pable to evaluate f on basis states |0ð , . . . , |N − 1ð, provided that one has access
to such an oracle.
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The algorithm works as summarized in Algorithm 5.1.1 and uses two key opera-
tions, that we now analyse:

Algorithm 5.1.1 (Grover’s Quantum Search [6])

Input: A: Initialization operator, Oφ: Oracle operator, K: Number of iterations.
Output: Basis state |q⋆ð, ideally such that φ(q⋆) = Ã, i.e., f(q⋆) = 1.

Let D := −A(I− 2 |0ð ï0|)A . ▷ Diffusion operator
Initialize the system in the state |È0ð = A |0ð. ▷ Initialization
for k = 0, . . . , K do
|Èk+1ð ← DOφ |Èkð. ▷ Oracle & diffusion call

end for
return Measure |Èk+1ð in computational basis and return outcome |q⋆ð.

The Oracle.

The oracle evaluates the function f on basis states. For convenience, we introduce
the oracle function φ : [N ]→ {0, Ã} such that φ(q) = Ã · f(q). In the computational
basis, the oracle is the diagonal matrix

Oφ :=







eiφ(0)

. . .
eiφ(N−1)






. (189)

Its effect on a basis state |qð is

Oφ |qð = eiφ(q) |qð =
{

− |qð , if f(q) = 1,

|qð , if f(q) = 0.
(190)

As a result, the oracle rotates the phase of the solution by Ã radians and leaves
the system unchanged otherwise.

The Diffusion Operator.

Let S0 = I− 2 |0ð ï0|. The diffusion operator, defined as

D := −AS0A
 = −(I− 2 |È0ð ïÈ0|), (191)

performs a reflection operation of the state vector about the initial state |È0ð.

It turns out that Grover’s algorithm is a repetition of a composition of two reflec-
tions: The oracle Oφ reflects the state vector about the superposition-of-solutions
state |È+ð and the diffusion operator D reflects the state vector about the initial
state |È0ð. The Grover operator is defined as follows:
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Definition 5.1.1 (Grover Operator [6, 27])

The Grover operator is defined as

G := DOφ = −AS0A
 
Oφ. (192)

Let us normalize the states |È+ð and |È−ð as

|¸+ð :=
1√
a
|È+ð and |¸−ð :=

1√
1− a

|È−ð . (193)

Interestingly, the 2-dimensional subspace H spanned by |¸+ð and |¸−ð is stable
under the action of the Grover’s operator. It holds:

Lemma 5.1.1 (Stability under Grover’s operator, follows [27, Lemma 1])

The space spanned by {|¸+ð , |¸−ð} is invariant under the Grover operator:

G |¸+ð = (1− 2a) |¸+ð− 2
√

a(1− a) |¸−ð , (194)

G |¸−ð = 2
√

a(1− a) |¸+ð+ (1− 2a) |¸−ð . (195)

Proof : From [27, Lemma 1], it holds

G |ψ+ð = (1− 2a) |ψ+ð− 2a |ψ−ð , (196)

G |ψ−ð = 2(1− a) |ψ+ð+(1− 2a) |ψ−ð , (197)

such that

1√
a
G |ψ+ð = (1− 2a) · 1√

a
|ψ+ð−

2a
√
1− a√
a

· 1√
1− a

|ψ−ð , (198)

1√
1− a

G |ψ−ð =
2
√
a(1− a)√
1− a

· 1√
a
|ψ+ð+ (1− 2a) · 1√

1− a
|ψ−ð , (199)

yielding the desired result.

The normalization in Equation (193) allows to rewrite the initial state |È0ð as
|È0ð =

√
a |¸+ð +

√
1− a |¸−ð, and we can find an angle ¹ ∈ [0, Ã/2] such that

a = sin2(¹), yielding for G the matrix representation

G =

(

cos(2¹) sin(2¹)
− sin(2¹) cos(2¹)

)

(200)

in the subspaceHwith respect to its two basis vectors. This matrix representation
as rotation is a very comfortable representation of the Grover iteration: Multiple
applications of the same rotation can be collapsed into a single rotation, so that
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applying k Grover iterations on |È0ð results in

|Èkð = G
k |È0ð = sin((2k + 1)¹) |¸+ð+ cos((2k + 1)¹) |¸−ð . (201)

Consequently, as long as k is not too large, one step in Grover’s algorithm rotates
the state vector towards the superposition-of-solutions state.

Optimal Number of Iterations.

To maximize the probability of measuring a solution, we want to have the coeffi-
cient sin((2k + 1)¹) as close as possible to one. Therefore we need

K =
Ã

4¹
− 1

2
(202)

Grover iterations, which is inO(1/√a). The quadratic speedup is formally framed
in the following theorem:

Theorem 5.1.1 (Quadratic speedup of Grover’s search [27, Theorem 2])

Let A be any quantum operator that makes no measurement and the function
φ : [N ]→ {0, Ã} an oracle function. Let a > 0 be the initial success probability of
A and setK = + Ã

4¹
,, where ¹ is defined such that a = sin2(¹) and 0 < ¹ < Ã

2
. Then,

if we compute G
K
A |0ð where G is the Grover operator from Equation (192)

and measure the system, the outcome yields a solution with probability at least
max(1− a, a).

Consequently, the success rate after the measurement is always at least 1
2
, so that

we retain the average computational complexity of O(1/
√
a) even when taking

into account that the process might have to be repeated if a non-solution is mea-
sured.

Note that K depends on a, which depends on the overlap of the initial state
|È0ð with the state of solutions |È+ð before running the algorithm. The quan-
tum counting algorithm proposed by Brassard et al. [105] allows to approximate
this quantity. The basic idea is to embed the Grover’s matrix from Equation (200)
into the quantum phase estimation algorithm [12, 44], which allows to compute,
given a unitary matrix O and a one of its eigenvectors |Èð, the phase φ such that
O |Èð = ei2Ãφ |Èð. For the Grover operator G, this phase is effectively ±¹/Ã.

5.1.2 Phase Matching Condition in Grover’s Search

Suppose that in the above binary search problem, instead of f : [N ]→ {0, 1}, the
Boolean function is given by f : [N ] → {0, C}, where C ∈ R is a constant that is
not necessarily one. In this setting, the quantum oracle takes the form:

O
³
φ |qð :=

{

ei³ |qð , if f(q) = const,

|qð , if f(q) = 0,
(203)
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for some ³ ∈ [0, 2Ã]. Will Grover’s search still find a solution?

More generally, let us replace the Grover reflections by arbitrary phase rotations

O
³
φ := −

(

I−
(

1− ei³
)

|¸+ð ï¸+|
)

(204)

and D
´ := −

(

I−
(

1− ei´
)

|È0ð ïÈ0|
)

, (205)

where ´ ∈ [0, 2Ã] is another phase factor. Long et al. [106] observed that the
response to the above question is affirmative if and only if the phase matching
condition is fulfilled, a condition imposing that ³ = ´. This phenomenon was an-
alyzed multiple times afterwards, and in particular adapted to find the solution
with certainty, meaning that probability for finding a solution is one[107, 108]. It
will play a crucial role for the algorithm that we will construct later for solving
the Ising problem, deserving a more profound understanding.

Definition 5.1.2 (Phase matching condition [106])

Let O³
φ and D

´ as defined in Equations (204) and (205) be two phase rotation
operators and the modified Grover operator be defined as

G
³,´ = D

´O³
φ. (206)

We will say that the Grover phase matching condition is fulfilled if ³ = ´ = Ã.

For Oφ and D from Equations (204) and (205), Lemma 5.1.1 becomes:

Lemma 5.1.2 (Stability under the modified Grover operator)

The space spanned by {|¸+ð , |¸−ð}, is invariant under the modified Grover op-
erator in Equation (206):

G
³,´ |¸+ð =(−ei³ − aei³(1− ei´)) |¸+ð+ei³(1− ei´)

√

a(1− a) |¸−ð , (207)

G
³,´ |¸−ð = (1− ei´)

√

a(1− a) |¸+ð+ (−ei´ − a(1− ei´)) |¸−ð . (208)

Proof : It holds

G
³,´ |η+ð =

(

I−
(

1− ei´
)

|ψ0ð ïψ0|
)(

I−
(

1− ei³
)

|η+ð ïη+|
)

|η+ð (209)

=
(

I−
(

1− ei´
)

|ψ0ð ïψ0|
)(

|η+ð −
(

1− ei³
)

|η+ð
)

(210)

and

G
³,´ |η−ð =

(

I−
(

1− ei´
)

|ψ0ð ïψ0|
)(

I−
(

1− ei³
)

|η+ð ïη+|
)

|η−ð (211)

=
(

I−
(

1− ei´
)

|ψ0ð ïψ0|
)

|η−ð . (212)

Writing |ψ0ð as |ψ0ð =
√
a |η+ð+

√
1− a |η−ð and rearranging the terms delivers the claim.
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Figure 5.1.1: Phase matching in quantum search. The initial vector of the algorithm is a
state vector |È0ð =

√
a |¸+ð +

√
1− a |¸−ð with a = 1/10. At each iteration, the oracle

marks the solution with phase ³, while the diffusion operator marks the initial state with
phase ´. (From left to right, top to bottom) On the vertical axis is the probability of
measuring a solution, |¸+ð, after k iterations. We see that the success probability peaks
on the diagonal, when ³ and ´ satisfy the phase matching condition.

Using again that a = sin2(¹), we can re-write G
³,´ in matrix form as

G
³,´ =

(

−ei³ − 1
2
ei³(1− ei´)(1− cos(2¹)) 1

2
(1− ei´) sin(2¹)

1
2
ei³(1− ei´) sin(2¹) −ei´ − 1

2
(1− ei´)(1− cos(2¹))

)

.

(213)

Figure 5.1.1 showcases the effect of the operator G for different values of ³ and
´ on a state vector |È0ð =

√
a |¸+ð +

√
1− a |¸−ð with a = 1/10. On the z-axis is

the probability of measuring |¸+ð after a total number of k iterations. Indeed, we
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see that the success probability boils and peaks on the diagonal, where ³ ≈ ´.
The highest peak is obtained for k = 2, which is the optimal number of iterations
in the ideal Grover’s setting, in which ³ = ´ = Ã. In the regions where ³ ̸= ´,
the success probability wave never crosses the 0.5 threshold, suggesting that such
configurations are inaccurate for an efficient search.

To analytically understand this phenomenon, Long et al. [106] considered that a
is in general very small, in the order of 1

N
. This allows to write the approximation

cos(2¹) ≈ 1 and sin(2¹) ≈ 2¹, reducing G to

G
³,´ =

(

−ei³ (1− ei´)¹
ei³(1− ei´)¹ −ei´

)

(214)

Up to the global phase factor ei(³+´)/2, we can rewrite G as

G
³,´ =

(

−ei(³−´)/2 1
2
e−i³/2

(

e−i´/2 − ei´/2
)

(2¹)
1
2
ei³/2

(

e−i´/2 − ei´/2
)

(2¹) −ei(−³+´)/2
)

. (215)

If the phase matching condition ³ = ´ is satisfied, we have that

G
³,´ = I+ 2¹ sin(´/2)

(

G
³,´

)′
, (216)

where
(

G
³,´

)′
=

(

0 −ie−i³/2
−iei³/2 0

)

(217)

is a skew-Hermitian matrix:
(

G
³,´

)′2
= −I,

(

G
³,´

)′3
= −

(

G
³,´

)′
and

(

G
³,´

)′4
= I.

Nothing that G
³,´ in Equation (216) is the first order Taylor approximation of

exp
(

G
³,´

)′
and and writing the exact expression of this exponentiation, we get

G
³,´ ≈ exp(i2¹ sin(´/2)

(

G
³,´

)′
= cos(i2¹ sin(´/2))I+ sin(i2¹ sin(´/2))

(

G
³,´

)′

(218)
yielding:

(

G
³,´

)k ≈
(

cos (2k¹ sin(´/2)) −ie−i³/2 sin (2k¹ sin(´/2))
−iei³/2 sin (2k¹ sin(´/2)) cos (2k¹ sin(´/2))

)

. (219)

By changing the basis {|¸+ð , |¸−ð} to {|¸+ð , |˜̧−ð} :=
{

|¸+ð ,−ie−i³/2 |¸−ð
}

, one

finds that
(

G
³,´

)k
is similar to the matrix

(

G̃
³,´

)k

=

(

cos (2k¹ sin(´/2)) sin (2k¹ sin(´/2))
− sin (2k¹ sin(´/2)) cos (2k¹ sin(´/2))

)

. (220)

Starting from the initial vector |È0ð in the new basis, the quantum state at the k-th
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iteration is given by

|Èkð ≈
(

G̃
³,´

)k

|È0ð (221)

= sin ((2k sin(´/2) + 1)¹) |¸+ð+ cos ((2k sin(´/2) + 1)¹) |˜̧−ð . (222)

Optimal Number of Iterations.

Again, to maximize the amplitude of solution basis states, we want k such that
(2k sin(´/2) + 1)¹ ≈ 1, requiring, for ´ ̸= 0 mod 2Ã, to set

K =

⌊

1

sin(´/2)

(

Ã

4¹
− 1

2

)⌋

. (223)

If ³ = ´ = Ã, we are in the Grover setting. Otherwise we have sin(´/2) < 1 and
we see that more iterations are necessary to reach the peak success probability.

For the case where the phase matching condition is not fulfilled, i.e., ³ ̸= ´, we
refer to the analysis of Long et al. [106], where it is shown that the operator G

does not increase the probability of measuring solutions and the quantum search
fails.

5.1.3 Non-Boolean Quantum Amplitude Amplification

The above section introduced quantum search for Boolean functions. In this sec-
tion, we shortly review the non-Boolean amplitude amplification (NBAA) algorithm
proposed by Shyamsundar [28] to extend the search algorithm to non-Boolean
functions. In contrast to Boolean functions that rigorously separate solutions
from non-solutions, non-Boolean functions allow for more degrees of freedom to
characterize the “goodness” of a solution, akin to objective functions in classical
optimization problems such as the Ising problem.

Given a function f : [N ] → [0, 1], resp., an oracle function φ : [N ] → [0, Ã], the
NBAA algorithm aims to find the solution |q⋆ð that solves

maximize
q∈[N ]

f(q), resp., maximize
q∈[N ]

φ(q). (224)

NBAA turns this maximization problem into an equivalent minimization prob-
lem

minimize
q∈[N ]

cos(φ(q)). (225)

To solve the problem, the domain of f resp. φ is relaxed by introducing an ancilla
qubit. The basis of the Hilbert space of computation becomes

{|0, qð , q ∈ [N ]} ∪ {|1, qð , q ∈ [N ]} . (226)

In the above expression, the first register is called ancilla register and the second
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register the working register. The utility of the ancilla qubit will be made clear later
in this section.

The NBAA algorithm is summarized in Algorithm 5.1.2. It makes use of oracle
calls and diffusion operations to amplify the amplitudes of basis states |q⋆ð for
the solution q⋆ maximizing f , resp. φ.

Algorithm 5.1.2 (Non-Boolean Amplitude Amplification [28])

Input: A: Initialization operator, Oφ: Oracle operator, K: Number of iterations.
Output: Basis state |q⋆ð, ideally such that φ(q⋆) = max {φ(q), q ∈ [N ]} .

Let D = −H¹A(I− 2 |0, 0ð ï0, 0|)H ¹A
 . ▷ Diffusion operator

Initialize the system in the state |È0ð = H¹A |0, 0ð. ▷ Initialization
for k = 0, . . . , K do

if k is odd then
|Èk+1ð ← DOφ |Èkð. ▷ Oracle & diffusion call

else
|Èk+1ð ← DO

 
φ |Èkð. ▷ Oracle & diffusion call

end if
end for
return Measure |Èk+1ð in computational basis and return outcome |q⋆ð.

At the beginning of the algorithm, a Hadamard gate is applied to the ancilla
qubit. Here also, the operator A prepares from the working register initially in
the state |0ð a supposition

∑

q∈[N ] ³0(q) |qð of elements on [N ]. We define the initial

state |È0ð as |È0ð = 1√
2

∑

q∈[N ] ³0(q)(|0, qð+ |1, qð).

Next, we present the oracle and diffusion operations of NBAA:

The Oracle.

The NBAA-oracle is a controlled operator acting as on basis states according to

Oφ |0, qð := eiφ(q) |0, qð , (227)

Oφ |1, qð := e−iφ(q) |1, qð . (228)

The algorithm also makes use of the inverse oracle defined as

O
 
φ |0, qð := e−iφ(q) |0, qð , (229)

O
 
φ |1, qð := eiφ(q) |1, qð . (230)

The Diffusion Operator.

Let S0 = I− 2 |0, 0ð ï0, 0|. The NBAA diffusion operator is defined as

D := −(H¹A)S0(H
 ¹A

 ). (231)

80
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Remark a Grover-like oracle: While H initializes the ancilla register, A initializes
the working register. Hence, H¹A is the initialization operator for the 2-register
quantum system.

To analyze the iterations of the algorithm, we introduce the states

|³³³ð := Oφ |È0ð=
1√
2

∑

q∈[N ]

³0(q)
(

eiφ(q) |0, qð+ e−iφ(q) |1, qð
)

, (232)

|́´́ð := O
 
φ |È0ð =

1√
2

∑

q∈[N ]

³0(q)
(

e−iφ(q) |0, qð+ eiφ(q) |1, qð
)

, (233)

and the angle ¹ ∈ [0, Ã] such that

cos(¹) := ïÈ0|³³³ð =
∑

q∈[N ]

|³0(q)|2 cos(φ(q)). (234)

The term cos(¹) is a weighted average of the cosines of the oracle function values.
The ancilla qubit precisely helps to form the cosine from the exponential function,
resulting from Euler’s formula: cos(x) = (eix + e−ix) /2 for x ∈ R. The following
lemma is immediate:

Lemma 5.1.3 (Stability under the NBAA iterations [28, Equations 51-54])

The space spanned by {|È0ð , |³³³ð , |́´́ð} is invariant under the NBAA iterations:

DOφ |È0ð = 2 cos(¹) |È0ð − |³³³ð , (235)

DO
 
φ |³³³ð = |È0ð , (236)

DO
 
φ |È0ð = 2 cos(¹) |È0ð − |́´́ð , (237)

DOφ |́´́ð = |È0ð . (238)

The lemma confirms that the NBAA iterations alternatingly bring the state vector
into the space spanned by {|È0ð , |³³³ð}, then into the space spanned by {|È0ð , |́´́ð},
and back. In matrix form, at iteration k we can write, see [28],

|Èkð =











(|È0ð |³³³ð)
(

2 cos(¹) 1
−1 0

)k (1
0

)

, if k is odd,

(|È0ð |́´́ð)
(

2 cos(¹) 1
−1 0

)k (1
0

)

, if k is even,
(239)

which results in

|Èkð =
{

1
sin(¹)

(sin((k + 1)¹) |È0ð − sin(k¹) |³³³ð) , if k is odd,
1

sin(¹)
(sin((k + 1)¹) |È0ð − sin(k¹) |́´́ð) , if k is even.

(240)
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We read out the amplitudes of the basis states at this iteration as

³k(ℓ, q) =

{

³0(q)
sin(¹)

(

sin((k + 1)¹) |È0ð − sin(k¹)eiφ(q)
)

, if k + ℓ is odd,
³0(q)
sin(¹)

(

sin((k + 1)¹) |È0ð − sin(k¹)e−iφ(q)
)

, if k + ℓ is even.
(241)

Let pk(ℓ, q) := 1
2
|³k(ℓ, q)|2 denote the probabilities of measuring the states |ℓ, qð

for ℓ = 0, 1. It follows that we measure each basis state |qð at iteration k with
probability

pk(q) = pk(0, q) + pk(1, q) (242)

= |³0(q)|2 (1− ¼k (cos(φ(q))− cos(¹))) , (243)

where, assuming sin(¹) ̸= 0,

¼k :=
2 sin(k¹) sin((k + 1)¹)

sin2(¹)
. (244)

It is important to mention that p(0, q) = p(1, q), meaning that the ancilla and
working register are not entangled. The consequence is that measuring the an-
cilla qubit or not has no influence on the outcome of the algorithm.

Optimal Number of Iterations.

Now, we want to compute the number of NBAA iterations needed to maximally
amplify the amplitude of the solution.

From Equation (243), we see that pk(q) is linear in cos(φ(q)). If the slope ¼k is posi-
tive, the states with cos(φ(q)) < cos(¹) are amplified; states satisfying the converse
inequality are attenuated. The amplification factor depends on the magnitude of
the slope ¼k and on the difference cos(φ(q))− cos(¹). For our target solution, this
difference is maximal compared to all other possible q. Hence, if we regard ¼k
in Equation (244) as a function of k, as long as ¼k > 0 and increases, the probabil-
ity of measuring the q⋆ maximizing f gets amplified the most in each iteration.

The derivative of ¼k at k is zero if sin((2k + 1)¹) = 0. Hence, for ¼k to monoton-
ically increase, it is sufficient that 0 f (2k + 1)¹ f Ã. The algorithm stops right
before the iteration that will cause ¼k to decrease, yielding for NBAA the optimal
number of iteration

K =

⌊

Ã

2¹

⌋

. (245)

Example : [28, Section 5] As an example, we consider the non-binary optimization prob-
lem with n = 8 and N = 2n = 256 basis states. The oracle function is set to the linear
function

ϕ(q) =
q

255

π

4
, for q = 0, 1, . . . , 255. (246)
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Figure 5.1.2: NBAA amplification histograms on the example oracle function in Equa-
tion (246), image adapted from [28, Figure 9]. The optimal solution is q⋆ = 255 and the
optimal number of iterations is K = 3. The average of the cosines of the oracle function
values, c.f. Equation (234), is obtained as q = φ−1(¹). The amplitudes of all basis states
with value less than the value of q are gradually decreased while those for basis states
above q are amplified for k = 1, 2, 3.

Let the initial state be

|ψ0ð =
1√
256

255
∑

q=0

|qð . (247)

Then, we have

cos(θ) =
1

256

255
∑

q=0

cos
( q

255

π

4

)

≈ 0.9001 (248)

and thus θ ≈ 0.4507. From Equation (245), we obtain that the optimal number of itera-
tions is K = 3.

Figure 5.1.2 visualizes the amplification histograms for this example for k = 1, 2, 3.
For each basis state, the squared amplitude, i.e., probability of measurement in Equa-
tion (243), is calculated analytivally. We see that amplitudes of all basis states with oracle
function value above cos(θ) are gradually decreased while those with oracle function
value below cos(θ) are amplified for k = 1, 2, 3. The histograms clearly peaks at the
solution, thus agreeing with the expectations in Section 5.1.3.

Discussion.

Grover’s Boolean search guarantees to find the solution with a probability at least
0.5. In NBAA after the optimal number of iterations, the solution certainly has
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the highest amplitude, but, as illustrated in the NBAA example, not necessarily
greater than 0.5. A natural question emanating from NBAA is whether we can
amplify the amplitude of the solution further.

5.2 Proposed PM-NBAA for non-Boolean Functions

In this section, we propose and analyze a modification of NBAA termed PM-
NBAA, for Phase Matching-NBAA. It is based on the observation that, under some
assumptions, repeatedly applying the oracle instead of alternating between the
oracle and its inverse as in NBAA can amplify the amplitude of the solution fur-
ther, possibly at the cost of more iterations than required for NBAA.

Assumptions.

The phase matching condition from section 5.1.2 suggests that the phase ³ of the
solution must match with the phase ´ of the diffusion in order to solve the search
problem efficiently. Furthermore, it has been shown that the closer the phases are
to Ã, the faster the search.

However, we know from Section 5.1.3 that an important requirement for the ap-
plicability of NBAA is that cos(¹) in Equation (234) is positive. Scaling and shift-
ing cos(¹) to satify this requirement requires to scale the oracle function φ in an
appropriate interval, such that the cosine values are positive. Considering now
an example configuration in which we restrict NBAA to a binary search problem
with the oracle function scaled such that φ(q) ∈ {0, ³}. Since the diffusion opera-
tion of NBAA is D = −(I+2 |È0ð ïÈ0|), we have ´ = Ã and since the oracle marks
the solution as Oφ |q⋆ð = ei³ |q⋆ð, having ³ ̸= Ã causes the phases to no longer
match, which in general greatly reduces the probability of measuring the state of
the solution. This problem is addressed by using different scaling intervals in a
two-step optimization process.

We assume the following:

1. Initial Good Overlap with the Solution.

In a first step, the initial state

|È0ð := DOφNBAA
|0ð¹n :=

1√
2

∑

q∈[N ]

³0(q)(|0, qð+ |1, qð) (249)

is prepared to have a good overlap with the solution q⋆, meaning that the
amplitude |³0(q

⋆)| of the solution is greater than those of all non-solutions.
Additionally, we will require the phases of the complex amplitudes ³0(q) to
have the same ordering as φ(q). This condition can be satisfied by scaling
φ to map into [0, Ã

2
] and running one NBAA Iteration. We will call this first

oracle function φNBAA.
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2. Phase Matching Condition.

In the second step of the algorithm, the oracle function φ is re-scaled to map
into [0, Ã] in a way to mark the solution by the phase φ(q⋆) = ±Ã, satisfying
the phase matching condition. This condition justifies the name of the algo-
rithm, PM-NBAA for Phase Matching-NBAA. We will call the second oracle
function φPM. In this second step of the algorithm, the state vector of the
system is computed as

|Èk+1ð = DOφPM
|Èkð . (250)

The Modified Algorithm.

The full PM-NBAA algorithm is shown in Algorithm 5.2.1. Different to plain
NBAA is the preparation of the initial state, and that the algorithm does not al-
ternate between the oracle and its inverse. PM-NBAA can be seen as a gener-
alization of Grover’s quantum search algorithm to non-Boolean function for an
arbitrary initial amplitude distribution [109].

Algorithm 5.2.1 (Phase Matching-NBAA (PM-NBAA))

Input: A: Initialization operator, Oφ: Oracle operator, K: Number of iterations.
Output: Basis state |q⋆ð, ideally such that φ(q⋆) = max {φ(q), q ∈ [N ]} .

Let D := −(H¹A)(I− 2 |0, 0ð ï0, 0|)(H ¹A
 ). ▷ Diffusion operator

Scale φ to map into [0, Ã
2
], get φNBAA. ▷ Satisfy the initial good overlap

condition
Compute |È0ð ← DOφNBAA

|0ð¹n ▷ Initialization
Scale φ to map into [0, Ã], get φPM. ▷ Satisfy the phase matching condition
for k = 0, . . . , K do
|Èk+1ð ← DOφPM

|Èkð. ▷ Oracle & diffusion call
end for
return Measure |Èk+1ð in computational basis and return outcome |q⋆ð.

Analysis.

In the following, we track the amplitudes of the basis states and inductively show
that the amplitude of the solution is amplified.

Let

|Èkð =
1√
2

∑

q∈[N ]

(³k(0, q) |0, qð+ ³k(1, q) |1, qð) (251)

be the state of the quantum system after iteration k > 0. After one iteration of
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PM-NBAA, see Equation (250), we have

|Èk+1ð = DOφPM
|Èkð (252)

=
1√
2

∑

q∈[N ]

(

2³0(q) cos(¹k)− ³k(0, q)eiφPM(q)
)

|0, qð

+
1√
2

∑

q∈[N ]

(

2³0(q) cos(¹k)− ³k(1, q)e−iφPM(q)
)

|1, qð , (253)

with

cos(¹k) =
1

2

∑

q∈[N ]

|³0(q)|
(

³k(0, q)e
iφPM(q) + ³k(1, q)e

−iφPM(q)
)

. (254)

The amplitudes of the basis states at this iteration are obtained from Equation (253)
as

{

³k+1(0, q) = 2³0(q) cos(¹k)− ³k(0, q)eiφPM(q),

³k+1(1, q) = 2³0(q) cos(¹k)− ³k(1, q)e−iφPM(q).
(255)

To understand the behavior of the algorithm, it is interesting to write down the
complex amplitude ³k(ℓ, q) = x + iy in the form |³k(ℓ, q)| eiϵk(ℓ,q) for ℓ = 0, 1,

where |³k(ℓ, q)| =
√

x2 + y2 and ϵk(ℓ, q) = atan2(y, x) are the magnitude and the
phase of ³k(ℓ, q). From Equation (255), we see that if |³k(0, q)| = |³k(1, q)| and
ϵk(0, q) = −ϵk(1, q), then |³k+1(0, q)| = |³k+1(1, q)| and ϵk+1(0, q) = −ϵk+1(1, q) for
all k. This evidently holds, as the initial state has been prepared by NBAA, see
Equation (241).

Again, we denote by p(ℓ, q) = 1
2
|³k(ℓ, q)|2 the probability of measuring |ℓ, qð for

ℓ = 0, 1. It holds from Equation (255) that the probability of measuring each basis
state is

pk+1(q) =pk+1(0, q) + pk+1(1, q) (256)

= |³k(0, q)|2 +
4 |³0(q)|2 cos2(¹k)−
4 |³0(q)| |³k(0, q)| cos (φ(q) + ϵk(0, q)) cos(¹k). (257)

Furthermore, we can rewrite cos(¹k) from Equation (254) as

cos(¹k) =
∑

q∈[N ]

|³0(q)| |³k(0, q)| cos (φ(q) + ϵk(0, q)) , (258)

which again has the form of a weighted average of the cos (φ(q) + ϵk(0, q)) terms.

Comparing Equation (257) and Equation (258) allows to make the following state-
ment: At each iteration, the cosine the oracle function values are modified accord-
ing to

cos(φ(q)) 7→ |³k(0, q)| cos (φ(q) + ϵk(0, q)) (259)
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and compared to their average value |³0(q)| cos(¹k). As long as cos(¹k) is positive,
the amplitudes of basis states with cost below the (iteration-dependent) average
are amplified and those of basis states with oracle function values above the av-
erage are attenuated. The basis states with oracle function values equal to the
average are always left unchanged. This statement is very similar, but not equal
to that of NBAA. However, while NBAA compares the same oracle function val-
ues to the same average value, PM-NBAA iteratively adjusts the oracle function
values and the average.

To prove the effectiveness of PM-NBAA, the only thing left to guarantee is that,
according to the sign of the average and within a certain number of iterations, the
solution q⋆ always has its oracle function value on the right side of the average to
get amplified.

We now take a closer look on the phases ϵk(0, q). After running the single NBAA
iteration in the first step of the algorithm – which supposes that cos(¹) is positive
– we obtain, according to the atan2 formulae, the following expressions for the
phases, c.f. Equation (241):

• If q is a basis state such that (2 cos(¹)− cos(φNBAA(q))) > 0 – which is a con-
dition that is fulfilled by the solution q⋆, we have:

ϵ0(0, q) = arctan

(

Im(³KNBAA
(0, q))

Re(³KNBAA
(0, q))

)

(260)

=arctan

( − sin(φNBAA(q))

2 cos(¹)− cos(φNBAA(q))

)

. (261)

• If q is a basis state such that (2 cos(¹)− cos(φNBAA(q))) < 0, we have:

ϵ0(0, q) = arctan

(

Im(³KNBAA
(0, q))

Re(³KNBAA
(0, q))

)

− Ã (262)

=arctan

( − sin(φNBAA(q))

2 cos(¹)− cos(φNBAA(q))

)

− Ã. (263)

Note that ϵ0(0, q) is well-defined as the numerator is always negative for φNBAA

mapping into [0, Ã
2
]. In both cases, ϵ0 is negative and q⋆ = argmaxq∈[N ] ϵ0(0, q).

This is the reason for requiring the phases to have the same ordering as the oracle
function values, as such the angle ϵk(0, q

⋆) for subsequent iterations remains near
to zero and ensures the phase matching condition. Indeed, for the subsequent
PM-NBAA iterations the oracle function φ is re-scaled to satisfy φPM(q

⋆) = ±Ã,
we have from Equation (255)

ϵk+1(0, q
⋆) = arctan

(

− |³k(0, q⋆)| sin (φPM(q
⋆) + ϵk(0, q

⋆))

2 |³0(q)| cos(¹k)− |³k(0, q⋆)| cos (φPM(q⋆) + ϵk(0, q⋆))

)

(264)
goes to zero for k going to∞.
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Assuming now that the phase matching and ideal scaling conditions are fulfilled,
we have φPM(q

⋆) = ±Ã, and |³k(ℓ, q⋆)|2 > |³k(ℓ, q)|2 for all q ̸= q⋆. Hence, for
positive cos(¹k), that

cos(φPM(q
⋆) + ϵk(0, q

⋆)) f cos (φPM(q) + ϵk(0, q)) , (265)

−4 |³0(q)| |³k(0, q⋆)| cos(¹k) f −4 |³0(q)| |³k(0, q)| cos(¹k). (266)

It follows from Equation (257) that pk+1(q
⋆) g pk(q

⋆) and pk+1(q
⋆) g pk+1(q) for all

q ̸= q⋆.

This means for the amplitude of the solution state q⋆ at iteration k + 1 not only
that it is amplified compared to its value at iteration k, but also that it is greater
than the amplitudes of all other non-solution states.

Optimal Number of Iterations.

In the PM-NBAA algorithm, the amplitude of the solution is boosted as long
as cos(¹k) is positive. Unfortunately, we cannot currently analytically say when
this happens, which also makes it impossible to find a closed expression for the

optimal number of iterations K. In our experiments, we set K =
√
N .

Example : To illustrate the functioning of PM-NBAA, we reconsider the NBAA example
with N = 28 = 255 and

ϕ(q) =
q

255

π

4
, for q = 0, 1, . . . , 255. (267)

The first step of the algorithm consists in running NBAA to prepare the quantum system
in a state that fulfils the initial good overlap condition, since ϕ(q) ∈ [0, Ã4 ] ¢ [0, Ã2 ] already
satisfies our requirement, we have ϕNBAA(q) 7→ ϕ(q) . After that, the oracle function is re-
scaled as ϕPM(q) 7→ 4 ·ϕ(q), thus marking the solution with the phase α = π and fulfilling

the phase matching condition. The PM-NBAA algorithm is executed for K =
√
N = 16

iterations.

In Figure 5.3.1, we show the amplification histograms for k = 1, 8, 16. The amplification
histogram are calculated analytically according to Equation (257). We see that PM-NBAA
certainly needs more iterations than NBAA, but clearly amplifies the amplitude of the
solution more over NBAA.

5.3 Solving the Ising Problem

We now turn towards applying the NBAA and proposed PM-NBAA methods for solving
the Ising problem, which comes down to defining the initialization and oracle operators
for the problem. For the oracle, we use the UQIsing circuit from the previous chapter.
The quantum system now consist of three registers: A 1-qubit ancilla register from the
(PM-)NBAA algorithm, a 1-qubit cost register from UQIsing, and, finally, the n-qubits
working register.
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Figure 5.3.1: An illustrative example of how the proposed PM-NBAA works. (Top row) Iteration dependent oracle function values
and their average, see Equations (257) and (258) (Bottom row) Squares of the amplitudes computed by NBAA after the optimal KNBAA

iteration and PM-NBAA after iteration k = 1, 8, 16, compared to the situation at iteration k = 0, 7, 15. The squared amplitudes were
computed analytically according to Equations (243) and (257). One iteration of NBAA is run first to prepare the system in a state that
fulfills the initial good overlap condition, according to the first step of the algorithm Equation (249). The PM-NBAA quantum state at
iteration k = 0 is the output of NBAA after one iteration. From k = 1, the oracle is re-scaled to fulfill the phase matching condition.
We clearly see that PM-NBAA continues to amplify the amplitude of the solution, continuing the work of NBAA.
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In Chapter 4, we introduced for the Ising Hamiltonian the unitary operator

U(C, a, b) :=

(

cos(Ĉ) − sin(Ĉ)
sin(Ĉ) cos(Ĉ)

)

, Ĉ := aC+ bI, (268)

where a and b were chosen to fit the oracle function values in an interval where
the cosine is monotone, c.f. Equation (151). The eigenvectors of U(C, a, b) have
the form |È±ð := |±ið ¹ |qð, where q ∈ [N ] and |±ið := 1√

2
(|0ð ± i |1ð), with i being

the complex unit. The associated eigenvalues are given by Ãq := exp(i ïq|Ĉ|qð).

Initialization.

At the beginning of the algorithm, the ancilla and cost qubits are prepared in the
entangled state 1

2
(|0,−ið+ |1,+ið). Let

H̃ =
1

2

(

(|0ð ï0| ¹HSZ) + (|1ð ï1| ¹HS)

)

(269)

be the two-qubits operator preparing this entanglement. The operator Ã prepares
from the working register, initially in the state |0ð, a superposition

∑

q∈[N ] ³0(q) |qð
of all possible basis states. The complete initial state is

|È0ð =
1

2

∑

q∈[N ]

³0(q)(|0,−i, qð+ |1,+i, qð). (270)

The initialization operator is given by A = H̃¹ Ã.

Oracle.

The complete three-register oracle for solving the Ising problem is given by the
operator Oφ = I¹U(C, a, b), whose effect on the basis states is

Oφ |0,−i, qð = eiφ(q) |0,−i, qð , (271)

Oφ |1,+i, qð = e−iφ(q) |1,+i, qð , (272)

where φ(q) = ïq|Ĉ|qð is the oracle function.

In Equations (271) and (272) the first qubit is the (PM-)NBAA ancilla qubit, while
the two last register form together the (PM-)NBAA working register, hence pre-
serving the register structure of the algorithm and also the analytical analysis.

Computing the Average Cost and Number of Iterations for NBAA.

Our principal reason for using the UQIsing unitary U(C, a, b) as oracle is that it
allows for computing an estimate of cos(¹), the average oracle function values of
all basis states. This is achieved by preparing the working register in the perfect
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superposition state |È0ð =
∑

q∈[N ] ³0(q) |qð, the cost qubit in the |0ð state, and
running the UQIsing circuit:

ïUð = ïÈ0|U|È0ð =
∑

q∈[N ]

|³0(q)|2 cos(φ(q)) = cos(¹) (273)

Having cos(¹) allows to estimate the optimal number of interactions required to
run NBAA via Equation (245).

We note that the QAOA unitary operator U(C, 1), c.f., Section 4.1, could be used
a oracle circuit as well, but it does not allow to estimate the value cos(¹) needed
to compute the optimal number of iterations. Estimating cos(¹) would require,
for example, to use the quantum mean estimation algorithm described in [28],
which incurs a considerable additional computation cost.

5.4 Experimental Results

In this section, we apply the NBAA and proposed PM-NBAA algorithms to the
Ising problem and compare the results to those of the variational UQIsing method
developed from the previous chapter. The algorithms are again tested on ran-
dom graphs generated using the PYTHON language package NETWORKX [99].
The unary and quadratic edge weights are all randomly and uniformly chosen in
the range [−10, 10] and the graphs are all fully connected. The quantum circuits
are implemented in PYTHON and simulated in a noise-free framework using the
QISKIT library and the IBM-QASM simulator [7]. We perform 1024 measurement
shots for evaluating each circuit.

5.4.1 Benchmark Metrics

As in the previous chapter, we denote by |È⋆ð the proposed (basis) ground state
returned by each method (NBAA, PM-NBAA, and UQIsing). The approximation
ratio and index as in the previous chapter will serve as benchmark metrics:

• As a remainder, the approximation ratio is defined as

r(È⋆) :=
ïÈ⋆|C|È⋆ð − Cmax
Cmin − Cmax

= 1− ïÈ
⋆|C|È⋆ð − Cmin
Cmax − Cmin

(274)

where Cmin and Cmax are the lowest and highest energy values.

• We re-define the approximation index i as

i(È⋆) := |³K(q⋆)|2 , (275)

i.e., the approximation index now ranges from 0 to 1 and gives the proba-
bility of measuring the optimal solution q⋆.

Each method is run for K maximum iterations. KNBAA is computed according

to Equations (245) and (273), KPM is set to
√
N and KUQIsing to 30.

91
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5.4.2 Benchmark Results

Our benchmark results are presented in Figure 5.4.1. The approximation ratio
and index are averaged over 20 random graph instances. NBAA is run for two
intervals, as this is crucial for scaling the average cost cos(¹): The oracle function
φ is scaled to fit into the interval [0, b] for NBAA. and the experiments are run
once for b = Ã

2
and once for b = Ã

4
. The different values for b do not induce a

notable difference in the approximation ratio and index.

On the other hand, see that PM-NBAA amplifies the amplitude of the solution
more than NBAA, but not necessarily enhances the approximation ratio. We at-
tribute this to the fact that PM-NBAA does no ensure that non-solutions are sup-
pressed, but merely that the probability of the solution increases at each iteration.
Hence, in PM-NBAA, non-solutions could contribute more to the approximation
ratio. In NBAA on the contrary, for both values of b, the amplitude of each ba-
sis state is proportional to it “goodness”, yielding the good approximation ratios
despite the low approximation indices. UQIsing performs better, in terms of ap-
proximation ratio and indices, than both NBAA and PM-NBAA.

5.5 Conclusion

To conclude, this chapter has investigated how to solve the Ising problem us-
ing a fully universal quantum algorithm. We applied the existing NBAA algo-
rithm [28] to the problem by constructing an oracle function for the algorithm.
In order to further amplify the probability of measuring the solution , we intro-
duced a modified version of the algorithm that we called PM-NBAA, which aims
to approximately satisfy the phase matching condition of Grover-like quantum
search methods. The resulting PM-NBAA certainly enhance the amplitude of
the solution, but not necessarily improve the approximation ratio. Nonetheless,
NBAA and PM-NBAA are fully quantum methods that do not require any outer
classical optimization support as in the variational UQIsing method [25]. PM-
NBAA, compared to UQIsing, is not trapped into local minima, and compared to
NBAA, delivers a higher probability of measuring a solution.
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Figure 5.4.1: Benchmarking the fully universal NBAA and PM-NBAA algorithm
against the variational, hybrid quantum-classical UQIsing algorithm on the Ising prob-
lem. (Top row) Approximation index, note the logarithmic scale. (Bottom row) Ap-
proximation ratio. The approximation ratios and indices are averaged over 20 random
graph instances. We see on the approximation index that PM-NBAA amplifies the am-
plitude of the solution more than NBAA, approximately about a factor of 10, but only sub-
stantially increases the approximation ratio for smaller problem instances. This is due to
the fact that PM-NBAA does no ensure that non-solutions are suppressed, only that the
probability of measuring the solution increases at each iteration. Hence, in PM-NBAA,
“very” non-solutions can occur more often and contribute more to the lower approxima-
tion ratio. Overall, both NBAA-based purely quantum methods are still outperformed in
practice by the hybrid quantum-classical UQIsing method as proposed in Chapter 4.
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CHAPTER 6

An Iterative Quantum Approach to Point Set
Registration

In this chapter, we turn towards a specific application from the field of computer
vision: Determining the best rigid transformation that aligns two coordinate sys-
tems based on corresponding landmarks, also known as transformation estimation
(TE). We propose an iterative method for estimating rigid transformations from
point sets. The chapter builds on the basic notions of adiabatic quantum comput-
ing from Section 2.5 and quantum annealing from Section 3.3.5.

We begin the chapter by modelling the problem. After that, our iterative method
is presented. The algorithm allows to solve the problem to high precision, and
does not suffer from inconsistent rotation matrices. Experiments are performed
at the end of the chapter, demonstrating the potential of the method in aligning
several datasets in two and three dimensions, and robustly even in settings with
high outlier ratios.

The chapter builds on the following author’s publications:

• Kuete Meli, N., Mannel, F., and Lellmann, J. “An iterative quantum ap-
proach for transformation estimation from point sets”, In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 529-537
(Juli 2022). https://doi.org/10.1109/CVPR52688.2022.00061.

6.1 The Transformation Estimation Problem

Let n, d ∈ N. Given a reference point set X̃ := (x̃i)
n
i=1 ∈ R

d,n and a template point set
Ỹ := (ỹi)

n
i=1 ∈ R

d,n, the purpose of transformation estimation (TE) [110, 111, 112]
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is to determine a rigid transformation f ⋆ : Rd → R
d that solves

min
f∈SE(d)

n∑

i=1

S(x̃i, f(ỹi)), (276)

where S is an appropriate similarity measure and SE(d) is the special Euclidean
group on R

d. The latter is formed by compositions of rotations and translations;
its degrees of freedom is given by p = d(d + 1)/2. Any transformation f ∈ SE(d)
can be represented in the form f(ỹi) = Rỹi + t, where R ∈ R

d×d is a rotation
matrix and t ∈ R

d is a translation vector. Choosing for S the squared Euclidean
distance yields minimizing the sum-of-squares objective function

n∑

i=1

S(x̃i, f(ỹi)) :=
n∑

i=1

∥x̃i − f(ỹi)∥
2
2 =

n∑

i=1

∥x̃i −Rỹi − t∥
2
2. (277)

It is well-known [110, 111] that by centering the points around their centroids,

i.e., defining X := X̃− ¯̃
X and Y := Ỹ − ¯̃

Y, with ¯̃
X and ¯̃

Y denoting the centroids
of the original point sets, the rigid registration problem reduces to finding the
best rotation matrix

R⋆ := arg min
R∈SO(d)

n∑

i=1

∥xi −Ryi∥
2
2. (278)

This reduces the transformation space of the problem to the d-dimensional special
orthogonal group SO(d) with exactly p = d(d − 1)/2 degrees of freedom. The
optimal translation t⋆ is then deducted from R⋆ by t⋆ = X̄−R⋆Ȳ.

Transformation estimation finds practical application in computer vision fields
such as robotics and image processing. For instance, in image registration, an
important preparatory step consists in roughly aligning the images based on cor-
responding landmarks [20]. Certain properties are desirable from a method for
solving the TE problem. They include, among others, the ability of the method to
accurately model the transformation that aligns the point sets, the ability to han-
dle high-dimensional data as well as data of increasing size, and the robustness
against noise and outliers [110].

6.2 Related Work

AQC-based algorithms have already been developed for several computer vi-
sion and image processing problems, much of them naturally dealing with bi-
nary variables. Examples include graph matching [113], and permutation related
problems [114, 115]. In this work, we will focus the one of aligning point sets.

While computer vision abounds with powerful classical algorithms to solve the
TE problem, e.g., ICP [116, 117] and CPD [118], there are still very few meth-
ods available for quantum computers. Our work is inspired by Golyanik and
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Theobalt [83], who pioneered a quantum approach (QA) for solving the transfor-
mation estimation problem based on approximating rotation matrices by linear
combinations of basis matrices, where the linear coefficients are binary variables
computed by AQC.

In their approach, the authors approximate R using binary coefficients qk ∈ {0, 1}
and basis matrices Qk as

R ≈ R̃ =

K∑

k=1

qkQk, (279)

where

• in d = 2 dimensions

Qk ∈ Q :=
{
wC ∈ R

2,2 | w ∈ {0.5, 0.2, 0.1, 0.1, 0.05} ,

C ∈ {I,−I,M,−M}} (280)

with

I :=
(
1 0
0 1

)

and M :=
(
0 −1
1 0

)

, (281)

• and in d = 3 dimensions

Qk ∈ Q :=
{
wC ∈ R

3,3 | w ∈ {0.5, 0.2, 0.1, 0.1, 0.05} ,

C ∈ {I,−I,Ma,−Ma,Mb,−Mb,Mc,−Mc,

Md,−Md,Me,−Me,Mf ,−Mf}} (282)

with

I :=

(
1 0 0
0 1 0
0 0 1

)

, Ma :=

(
0 1 0
−1 0 0
0 0 0

)

, Md :=

(
0 1 0
1 0 0
0 0 0

)

,

Mb :=

(
0 0 1
0 0 0
−1 0 0

)

, Me :=

(
0 0 1
0 0 0
1 0 0

)

,

Mc :=

(
0 0 0
0 0 1
0 −1 0

)

, Mf :=

(
0 0 0
0 0 1
0 1 0

)

. (283)

The basis matrices I, M and Ma, . . . ,Mf are obtained from Rodrigues’ formu-
lae [119] for construction rotation matrices in SO(d) from elements of the Lie al-
gebra so(d) by exponential mapping.

Recalculating the objective functional with the above approximation and omit-
ting constant terms yields the QUBO problem

min
R∈SO(d)

n∑

i=1

∥xi −Ryi∥
2 ≈ min

q∈{0,1}K

n∑

i=1

∥xi − R̃yi∥
2 = min

q∈{0,1}K
q¦Dq, (284)
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with couplers Dkl =
∑n

i=1 ïQkyi,Qlyið and biases Dkk = −2
∑n

i=1 ïxi,Qkyið.

A quick first performance demonstration of QA on D-Wave machines is shown
in Figure 6.2.1 on a selected 2D point set registration problem from the MNIST
point cloud data set [21]. One can visualize how dense the matrix D can be for
practical problems and how accurate the quantum annealer can compute the de-
formation matrices.

Discussion

QA [83] has certain limitations:

• In QA, the authors treat cos ¹ and sin ¹ as independent variables, say É1, É2

in 2D (3D similar), and then optimize with respect to both. This has the
disadvantage that the resulting matrix R = É1I+É2M may not be a rotation
matrix, as this requires É2

1 + É2
2 = 1. Solving for the closest orthogonal

approximation of R induces a considerable additional computational cost.

• The non-orthogonality issue of QA generates another issue, namely that
QA hardly handle noise, as it allows the computed matrices to scale and to
capture noise instead of aligning non-noisy points.

• The number K of logical qubits used in QA is fixed and results from the
cardinality of the basis matrix set Q; QA needs K = 20 qubits in 2D and
K = 70 qubits in 3D, a relatively high number compared to the original
degrees of freedom of the problem. Reducing this number is only possible
trough a carefully construction of the set Q with a reduced number of basis
matrices, a task that QA does not handle and leaves to the user.

In this study, our goal is to address the limitations of QA and propose a method
that scales more efficiently, produces orthogonal rotation matrices, and robustly
handles noise.

6.3 Proposed Quantum Registration Approach

Like many computer vision problems, the TE problem in Equation (278) is intrin-
sically not a binary optimization problem and as such not directly solvable on
current quantum annealers. We show that linearizing the rotation matrix and in-
troducing binary coefficients allows to approximate the least-squares registration
problem by a QUBO problem. Since the 2D and 3D cases are very similar, we
present our method from a general point of view and only switch to a case-by-
case discussion when necessary.

Unlike QA, our approach contains the number of qubits K as a free parameter
that can be chosen by the user. This is a critical step towards an algorithmic
scheme that can be carried out on current quantum hardware. Our algorithm
successively increases the approximation precision of the rotation parameters,
thereby enabling its computation to arbitrary precision.
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Figure 6.2.1: Inspection of QA [83] on a selected transformation estimation problem. (a)
Cost matrix D containing couplers and biases of the QUBO. Computing D is the most
costly part of the algorithm, as this matrix is dense. Using D, the D-Wave quantum
annealer accurately computes a bit-string encoding of the solution of the problem. (b)
Registration results of QA. Blue and olive are reference and template sets. Top and bot-
tom is before and after the registration. QA performs well, but sometimes returns non
orthogonal matrices as visible in the “one” points set where the registered template points
are scaled compared to the reference ones.
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Another issue is that optimizing over the rotation group SO(d) calls for an orthog-
onality constraint on the rotation matrix R. One way to avoid this constraint, as
already introduced in [120, 121], is to leverage the one-to-one correspondence
between the Lie group SO(d) and its algebra so(d). This allows to optimize Equa-
tion (278) over the linear space so(d), which is the set of skew-symmetric matrices
M of dimension d. Specifically, we will use the exponential map R = exp(M) to
associate to M ∈ so(d) the rotation matrix R ∈ SO(d) [119].

6.3.1 Approximation of Rotation Matrices

In order to represent rotation matrices with increasing accuracy in our quantum
approach, we use K-bit binary representations and quantize the interval [l, u] ac-
cording to

xq := l +
u− l

s

K−1∑

k=0

qk2
k, (285)

with binary variables qk ∈ {0, 1} and a scaling factor s = 2K − 1. We also refer
the reader to [122, 123] for alternative approaches for fixed- and floating-point
representations on quantum annealers.

Rotation Matrices in two Dimensions.

In 2D, all possible skew-symmetric matrices in so(2) are of the form

S(¹) = ¹M := ¹ ·

(
0 −1
1 0

)

, (286)

where ¹ ∈ R represents the rotation angle. The associated rotation matrix is

R(¹) := eS(¹) = (cos ¹)I+ (sin ¹)M, (287)

and any 2D rotation matrix can be written in this way [119]. To obtain a QUBO
problem that avoids the non-orthogonality issue of QA, we regard R(¹) as a non-
linear function of ¹ and determine the optimal ¹ in a multi-step process. Given a
current angle ¹c, we linearize R(¹) around ¹c using first-order Taylor expansion:

R(¹) ≈ R(¹c) + (¹ − ¹c)R
′(¹c) = R(¹c)− ¹cR

′(¹c) + ¹R′(¹c), (288)

where R′(¹c) = (− sin ¹c)I+ (cos ¹c)M is the first derivative of R with respect to ¹
at ¹c.

To obtain a QUBO problem, we quantize ¹ according to the K-bit binary repre-
sentation introduced in Equation (285): For a fixed search window size ¶ > 0, we
express ¹ ∈ [¹c − ¶, ¹c + ¶] by

¹ ≈ ¹c − ¶ + v̂, with v̂ :=
2¶

s

K−1∑

k=0

qk2
k. (289)
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Expressing Equation (288) in terms of the new variable v̂, we obtain the approxi-
mation

R(v̂) ≈ R(¹c)− ¶ R
′(¹c)

︸ ︷︷ ︸

=:Rc

+v̂R′(¹c)
︸ ︷︷ ︸

=:R′

, (290)

where the term Rc depends on ¹c and ¶, but is independent of the unknown v̂
and hence of the optimization variables qk ∈ {0, 1}, k = 0, . . . , K − 1.

For any of the mass-centered points yi, i = 1, . . . , n, as in Equation (278), we thus
find

R(v̂)yi ≈ Rcyi + (R′yi)v̂, (291)

The approximation Equation (291) is at the heart of the QUBO problem that we
solve. The number K of qubits used for quantizing v̂ can be chosen by the user,
for instance based on the available hardware. In particular, as quantum comput-
ers become more powerful, the precision can be scaled to larger values forK than
possible on current-day hardware.

Rotation Matrices in three Dimensions.

In the 3D case, the complete rotation parameters can be parameterized using a
vector v = (v1, v2, v3)

¦ ∈ R
3 encoding the rotation angle ¹(v) := ∥v∥2 and the

rotation axis x(v) := v/∥v∥2 = (x1(v), x2(v), x3(v))
¦. Any skew-symmetric matrix

in so(3) can be parameterized using v as

S(v) = M(v) := ¹ ·

(
0 −x3(v) x2(v)

x3(v) 0 −x1(v)
−x2(v) x1(v) 0

)

, (292)

and the exponential map, see [119], turns each such matrix S(v) into a rotation
matrix

R(v) = eS(v) = I+ g(v)M(v) + h(v)M2(v), (293)

with functions

g(v) :=
sin ∥v∥2
∥v∥2

and h(v) :=
1− cos ∥v∥2
∥v∥22

(294)

for v ̸= 0 and g(0) := 1, h(0) := 1/2, g′(0) = h′(0) = 0. Analogously to the
two-dimensional case, given a current vector vc, we linearize R around vc using
first-order Taylor expansion as

R(v) ≈ R(vc) +∇R(vc)(v − vc) = R(vc)−∇R(vc)(vc) +∇R(vc)(v), (295)
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where

∇R(vc) ≈ ∇g(vc)M(vc) +

g(vc)∇M(vc) +

∇h(vc)M
2(vc) +

h(vc)[∇M(vc)M(vc) +M(vc)∇M(vc)] (296)

with

∇g(vc) = vc ·

(
∥vc∥2 cos ∥2∥2 − sin ∥vc∥2

∥vc∥32

)

and (297)

∇h(vc) = vc ·

(
∥vc∥2 sin ∥2∥2 − 2(1− cos ∥vc∥2)

∥vc∥42

)

. (298)

(299)

Each of the terms in the sum in Equation (296) is a linear operator from R
3 to R

3×3.

Assuming that the components vj for j = 1, 2, 3 are each in the search window
[(vc)j − ¶, (vc)j + ¶] for some ¶ > 0, we use the discretization vj = (vc)j − ¶ + v̂j
from Equation (285) with v̂j :=

2∆
s

∑K−1
k=0 q

(j)
k 2k. Introducing qk := (q

(1)
k , q

(2)
k , q

(3)
k )¦,

we can rewrite v as v ≈ vc − ¶ + v̂. Thus, we arrive at the approximation

R(v̂) ≈ R(vc)− ¶ ∇R(vc)
︸ ︷︷ ︸

=:Rc

+∇R(vc)(v̂) (300)

= Rc +

M(vc)∇g(vc)
¦v̂ +

g(vc)∇M(vc)(v̂) +

M2(vc)∇h(vc)
¦v̂ +

h(vc)[∇M(vc)M(vc) +M(vc)∇M(vc)](v̂), (301)

where the term Rc depends on vc and ∆, but not on the optimization variables
qk ∈ {0, 1}

3, k = 0, . . . , K − 1. Interestingly, as M(v) is linear in v, we have
∇M(vc)(w) = M(w) for any vc, w ∈ R

3, so that we can rewrite the linearization as

R(v̂) ≈ Rc +

M(vc)∇g(vc)
¦v̂ +

g(vc)M(v̂) +

M2(vc)∇h(vc)
¦v̂ +

h(vc)[M(v̂)M(vc) +M(vc)M(v̂)]. (302)

The matrix multiplication M(v̂)w represents the cross product of v̂ and w, so that

101



6.3. Proposed Quantum Registration Approach

it holds M(v̂)w = −M(w)v̂, yielding, in the slight abuse of notation R′yi,

R(v̂)yi ≈ Rcyi + (R′yi)v̂ (303)

= Rcyi +
[

M(vc)yi∇g(vc)
¦ −

g(vc)M(yi) +

M2(vc)yi∇h(vc)
¦ −

h(vc)[M(M(vc)yi) +M(vc)M(yi)]

]

︸ ︷︷ ︸

=:R′yi

v̂. (304)

As before, the number K of qubits in this approximation can be chosen by the
user, permitting the use of larger values if computationally feasible.

Final Step of the QUBO Preparation.

As a final step, we introduce

q =







q0
q1
...

qK−1






∈ {0, 1}pK and (305)

U =
2¶

s
(D0 D1 . . . DK−1) ∈ R

p×pK , (306)

where for k = 0, . . . , K − 1 the diagonal matrix Dk ∈ R
p×p has the entries 2k. This

notation allow us to rewrite v̂ = Uq, so R′yiv̂ = R′yiUq, both in 2D and in 3D.

6.3.2 QUBO Formulation of the Problem

In the previous subsection, we derived an approximation of the products Ryi
based on a bit string q ∈ {0, 1}pK , with p = d(d − 1)/2 being the degrees of
freedom of so(d). Now, we provide a QUBO formulation of the transformation
estimation problem.

By design, we have Ryi ≈ Rcyi + (R′yi)v̂ by Equation (291) in the 2D case and
a corresponding (slightly more complicated) expression in the 3D case by Equa-
tion (303). Crucially, v̂ and thus q appear linearly in these approximations, there-
fore ∥xi −Ryi∥

2
2 is quadratic in q. By ignoring the q-independent terms, we find

that Equation (278) can be approximated in terms of v̂ as

min
q∈{0,1}pK

n∑

i=1

(
∥R′yiv̂∥

2
2 + 2 ïRcyi − xi,R

′yiv̂ð
)
. (307)
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As derived in Equation (305), we have v̂ = Uq. Therefore, we propose the follow-
ing QUBO to approximate Equation (278):

min
q∈{0,1}pK

q¦Dq, (308)

where

Dkl = U¦
k·

n∑

i=1

ïR′yi,R
′yiðU·l

and Dkk = U¦
k·

n∑

i=1

ïR′yi,R
′yiðU·k + 2U¦

k·

n∑

i=1

ïR′yi,Rcyi − xið . (309)

The terms U¦
k· ∈ R

1,p and U·l ∈ R
p,1 designate the transpose of the k-th column

and l-th column of U.

To solve Equation (308), we only need to provide the QUBO matrix D ∈ R
pK×pK

containing the couplers and biases to the quantum annealer. Note that the dimen-
sions of D do not depend on the number of points n. At the end of the annealing
procedure, the measured bit-string q is used to compute the rotation parameter
according to

¹ = ¹c − ¶ +Uq, and v = vc − ¶ +Uq, (310)

which completes one rotation estimate based on linearization around ¹c.

6.3.3 Iterative Quantum Transformation Estimation Algorithm

Our full iterative quantum transformation estimation strategy (IQT), described
for the 3D case (2D similar) in Algorithm 6.3.1, consists in solving Equation (308)
for different Taylor approximation points ¹c (2D case) or vc (3D case). We start
by making an initial guess for the rotation parameter such as ¹c = 0 ∈ R in 2D,
respectively, vc = 0 ∈ R

3 in 3D. For the search interval, we use an initial radius
of ¶ = Ã. After assembling the matrix D, Equation (308) is solved. The solution q
provides the next iterate ¹ or v via Equation (310).

An important part of our algorithm is that we treat ¶ as an adaptive parameter;
we aim to decrease ¶ whenever possible, which results in an increasingly better
approximation of the solution and the associated rotation matrix. We decrease ¶
whenever the difference between the current and the previous rotation parameter
becomes smaller than some threshold function of the binning size 2¶/s, which
we view as an indicator that the best solution within the current K-bits interval
discretization of [vc − ¶, vc + ¶] has been reached.
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Algorithm 6.3.1 (Iterative quantum transformation estimation (IQT))

Input: X, Y: Point sets to register, maxit: maximal number of iterations, vc:
initial 3D rotation parameter (2D similar), ¶: radius of the search interval, »:
threshold for reduction of ¶, and K: number of qubits for the discretization.

Output: Rotation matrix R⋆, ideally such that ∥X−R⋆Y∥2F = 0

¹0c ← ¹c. ▷ Initialization
Let Ä := »¶

2K−1
. ▷ Initialization

for j = 0, 1, 2, . . . ,maxit do
Compute Rc ← Rc(v

j
c) via Equation (300).

Construct Rcyi, R
′yi for i = 1, . . . , n via Equation (303).

Construct U via Equation (305).
Compute D with all Rcyi and R′yi according to Equation (309).

Obtain q ∈ {0, 1}pK by solving Equation (308) using Quantum Annealing.
Compute vj according to Equation (310).
if ∥vj − vjc∥2 < Ä then

¶ ← ¶/4, Ä ← Ä/4. ▷ Shrink search interval
end if
Update vj+1

c ← vj . ▷ Update parameters
end for
Compute R(vj) via Equation (300).
return Current rotation parameter vj , and associated rotation matrix R⋆ =
R(vj).

6.3.4 Classical Transformation Estimation

In Section 6.4 we compare the IQT algorithm with its classical relaxed version
named iterative classical transformation estimation (ICT) that results from replacing
the QUBO problem by a classical unconstrained quadratic programming (QP)
problem. Specifically, with Rỹi = Rcỹi + Riv from Equation (291), resp., Equa-
tion (303), and continuous variables v ∈ R

P , we construct the QP problem

min
v∈RP

v¦

(
n∑

i=1

ïR′yi,R
′yið

)

︸ ︷︷ ︸

=:W

v + 2

(
n∑

i=1

ïR′yi,Rcyi − xið

)¦

︸ ︷︷ ︸

=:c¦

v, (311)

whose solution is equivalent to that of the system of linear equations 2Wv = −c.

6.4 Numerical Experiments

In this section, we experimentally evaluate accuracy, robustness and run times of
a hybrid quantum-classical implementation of the proposed IQT algorithm. The
QUBO matrix D is prepared in Python 3.9.2 on an Intel i7-7700K CPU machine
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dataset name Number of points

2D
Synthetic points 150 (variable)
MNIST [21] 150
Lena edges [22] 4845

3D
Synthetic points 150 (variable)
Stanford bunny [23] 500
completion3D [24] 2048

Table 4: Datasets used in the experiments.

with 16 GB RAM and the QUBO problem is solved on a D-Wave annealer with
the default annealing time of 20µs and 100 reads per optimization iteration. After
the reads, the obtained state with the lowest energy is selected as approximate
solution of the QUBO.

The datasets used in the experiments are listed in Table 4. They are synthetic
point sets, the MNIST [21] and Lena edges [22] point sets in 2D; and the Stanford
bunny [23] and the completion3D [24] point sets in 3D. The number of points
varies from 150 for the synthetic point sets to 4845 in Lena edges. Synthetic data
was generated by sampling parameterized 2D (ellipses) and 3D (cylinder) base
shapes at different spacing and applying a rotation with random rotation param-
eters: In 2D we select ¹ uniformly in the range [0, 360], and in 3D we select ¹
uniformly in the range [0, 360], that we multiply with a normally distributed ro-
tation axis x to form the rotation parameter v. This allows for a fair investigation
of scaling effects without changing the difficulty of the underlying problem.

Choice of K.

Design choices of our method include the number of qubits K used for the nu-
merical representation of the unknown variables and the D-Wave graph topology.
We evaluate the precision of the reconstructed rotation parameter and matrix for
K ∈ {3, 5, 10} on synthetic 2D and 3D point sets for 15 iterations. Recall that in
total pK qubits are necessary to encode the QUBO problem, where p = 1 in 2D
and p = 3 in 3D. We run the experiment on the D-Wave 2000Q QPU which uses
the Chimera topology [124] and on the D-Wave Advantage 1.1 QPU which uses
the Pegasus topology [125]. We compare the computed rotation parameters and
matrices with the ground truth.

The results are displayed in Table 5. We observe that a greater number of qubits
does not necessarily increase the precision. As an example, the error for K =
10 qubits in the 3D case is much larger than the errors for K = 3 and K = 5.
This discrepancy is related to the average chain break fraction, implying that
more qubits translate into a noisier system, thereby increasing the amount of
miscalculations. In the subsequent experiments, we use K = 10 in 2D and K = 5
in 3D, and execute the algorithm on the D-Wave 2000Q QPU, which seems to be
the best configuration for the task at hand.
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QPU Topology 2000Q Advantage 1.1

# Qubits K 3 5 10 3 5 10

2D
|θ − θ

⋆| 2.42 · 10−5
1.06 · 10−10

1.66 · 10−14
2.28 · 10−4

1.13 · 10−8
2.58 · 10−12

∥R−R
⋆∥F 3.42 · 10−5

2.26 · 10−10
2.24 · 10−14

4.0 · 10−4
1.06 · 10−8

3.65 · 10−12

Chain break 0 0 0 0 0 0

3D
∥v − v

⋆∥2 4.2 · 10−4
4.00 · 10−6

8.76 · 10−1
9.7 · 10−5

6.71 · 10−7
0.8 · 10−2

∥R−R
⋆∥F 3.8 · 10−4

1.63 · 10−6
6.39 · 10−1

1.73 · 10−4
1.45 · 10−6

1.96 · 10−1

Chain break 0 0 0.01 0 0 0.002

Table 5: Distance of the rotation parameters ¹ and matrices R reconstructed by IQT to
the ground truth (¹⋆,R⋆) for different numbers of qubits K and on two D-Wave graph
topologies (2000Q and Advantage 1.1). The results are reported after 15 optimization
steps of the same problem in both the 2D and the 3D case. In addition, the chain break
fractions averaged over the 15 iterations are provided. Smallest errors are observed using
K = 10 qubits in the 2D case and K = 5 in 3D. For 3D problems, larger number of
qubits lead to chain breakage, which degrades the optimization process.

6.4.1 Benchmark Metrics

In order to verify the robustness of our method against outliers, we randomly
add noise to a fraction of the template points; said fraction is called the outlier
ratio. To evaluate the accuracy of the proposed method, we adopt two metrics
from [83]:

eR := ∥I−R¦R∥F (consistency error) (312)

and eA :=
∥X−RY∥F
∥X∥F

(alignment error), (313)

where ∥ · ∥F is the Frobenius norm. While the consistency error measures the or-
thonormality of the reconstructed rotation matrix, the alignment error expresses
how accurately the template points are mapped to the reference points. We re-
mark that if R⋆ is the optimal solution of (278) obtained for v⋆ and if vjc → v⋆

for vc generated by Algorithm 6.3.1, then the approximation of the rotation ma-
trix given by the right-hand side of the Taylor approximations in Equation (290),
respectively, Equation (300) converges to R⋆ (more precisely, with an error of
O(∥¹jc − ¹⋆∥22), resp., O(∥vjc − v⋆∥22)). Thus, the computed rotation matrices con-
verge towards truly orthogonal matrices.

6.4.2 Benchmark Results

In Figure 6.4.1 we visualize the registration errors of IQT and its classical coun-
terpart ICA as a function of the outlier ratio. We plot the errors for the 5-th, 10-th,
and 15-th iterations of IQT on 2D and 3D synthetic point sets. The errors in 2D are
compared with those of the QA approach from [83] with the complete datasets
as interaction points, i.e., K = n in the sense of QA.
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Figure 6.4.1: Benchmarking our IQT method against it classical ICA counterpart and
against the QA method from [83]. (Top row) Results on the synthetic 2D data set.
(Bottom row) Results on the synthetic 3D data set. Shown on the left is the alignment
error eA and on the right the consistency error eR (note logarithmic scale) as function of
the outlier ratio for the 5-th, 10-th, 15-th iteration. The proposed IQT method consistently
achieves the same accuracy as the classical ICA method while avoiding consistency errors
introduced by the QA method. The alignment error of QA in the 2D case seems better
than that if IQT. This is namely because, as shown by the consistency error, QA produces
non-orthogonal matrices and enlarge the feasible set of the initial optimization problem.

As expected, both IQT and ICA reduce the alignment error and converge to or-
thonormal matrices, with the consistency error being virtually independent of the
outlier ratio. In contrast, QA [83] is more susceptible to produce non-orthogonal
matrices as the outlier ratio increases. We highlight the convergence and the ro-
bustness similarities between IQT and ICT, justifying the usefulness of the K-bits
discretization and the ability of the quantum computer to approximate real num-
bers by such a discretization.
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# Qubits K IQT ICT
Matrix preparation Matrix preparation

QPU access time (ms) CPU access time (ms)

N 150 1500 20000 150 1500 20000

K = 10 2.5 23.2 311.25

2D
34.67 34.67 34.69

6.99 55.56 334.7K = 20 2.51 23 305.19

0.1 0.08 0.0635.32 34.79 35.26

K = 40 2.65 23.14 306.12

35.42 35.39 35.38

K = 5 3.43 32.07 425.56

35.04 34.92 34.96

6.58 34.84 421.773D K = 10 3.5 32.16 420.18

0.01 0.01 0.0135.23 35.23 35.24

K = 15 3.43 31.68 419.02

35.39 35.44 35.4

Table 6: Runtime comparison for solving the quadratic problem (125) on synthetic data.
(Left) Reports of our IQT quantum formulation. (Right) Reports for the classical
ICA counterpart . All values are averaged over 10 instances for each problem size N .
Experimentally, IQT runtime is independent of the number of qubits K. Matrix prepa-
ration dominates the QPU/CPU access time for solving the system.

Figure 6.4.2 presents registration results on the completion3D dataset [24] for
point pairs without noise and with 50% outlier ratio. We observe that IQT finds
a good transformation even in the presence of strong noise, with accuracy com-
parable to classical computation (ICT) while generating consistent (i.e., almost
orthogonal) rotation matrices.

Computational Costs and Timing.

The most computationally expensive operation of our method, just as for QA [83],
is the preparation of the couplers Dkl and biases Dkk at each iteration, see Equa-
tion (309), which require O(NÀ2K2p4) and O(NÀÀ′Kp2) operations, where À and
À′ represent the cost for computing Rcyi and Rcyi − xi.

Table 6 compares the QPU access time of IQT and the CPU access time for ICA for
solving the QP for various parameter configurations, averaged over 10 problem
instances and for one iteration. For both IQT and ICT, we provide the time for
the matrix preparations as well. We observe that both the QPU and CPU access
times remain relatively constant with respect to the different combinations. On
the contrary, the matrix preparation time grows with the number of points n and
exceeds the QPU and CPU access time for moderate n.

Limitations.

We regard IQT as a first step towards efficient transformation estimation and
ultimately point cloud registration on quantum hardware. Currently, the run
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6. An Iterative Quantum Approach to Point Set Registration

(a) Noise-free data. (b) Noisy data.

Figure 6.4.2: Performance of IQT. (a) Registration results on perfect point sets pairs. (b)
Registration results on template point sets with an outlier ratio of 50% to the reference
point sets. The point sets used are 3D points from the completion3D dataset [24]. Blue
points represent reference points and olive points represent template points. The initial
alignment is shown on the left and the result of the registration on the right. Even with
strong noise, the IQT algorithm provides a robust transformation estimation.
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time is dominated by preparation of the matrices both in the quantum as in the
classical case. Limited availability of quantum hardware currently introduces
additional time penalties for transfer to quantum computing service providers.
Ultimately, it would be beneficial to have an intrinsical (circuit-model) quantum
formulation that does not rely on AQC, which we leave for future work.

6.5 Conclusion

The proposed quantum approach for transformation estimation from point sets
demonstrates the potential of D-Wave quantum annealers to solve practically rel-
evant problems. While classical methods often relax combinatorial problems to
continuous ones, mapping our classical optimization problem to a form adapted
for quantum computing goes the reverse way, as current quantum annealers are
more efficient in solving combinatorial problems. In an iterative and hybrid opti-
mization regime, we classically compute the cost matrix of a QUBO problem that
we solve on the quantum machine, which allows to register the point sets with
refinement to improve accuracy.

We believe that transferring methods from one domain (classical) to another (quan-
tum) and vice versa could be an impactful way to push forward both fields and
improve adaptation. As quantum technologies continue to mature, we antici-
pate a transformative impact of the synergy between classical and quantum ap-
proaches in image processing.
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CHAPTER 7

Further Quantum Optimization Perspectives

In this chapter, we apply the recently proposed quantum Hamiltonian descent
(QHD) algorithm [15] to the non-convex rigid image registration problem. Pre-
requisites for this chapter are quantum evolution and Trotterization from Chap-
ter 2, as well basics of gradient-based optimization from Chapter 3. The QHD
method is derived from the path integral of dynamical system referring to the
continuous time limit of classical gradient descent methods. While gradient de-
scent methods can only move to a local minimum, the intrinsic quantum nature
of quantum elements allow to explore classically prohibited paths and boost the
performance of QHD to non-convex problems.

We begin the chapter by setting up the optimization framework. Then, we pro-
vide a brief review of gradient flows as classical dynamics, as well as quantum
dynamics on which the QHD method is based. Lastly, we classically simulate and
apply the method to the image registration problem, finding that the method can
effectively target the global solution of the non-convex problem.

7.1 The problem

We consider the optimization problem

inf
x∈X

f(x), (314)

where the feasible domain X is a finite dimensional convex set and f : X → R

is a convex and continuously differentiable function. We assume that f has a
unique minimizer x⋆ ∈ X satisfying the optimality condition ∇f(x⋆) = 0. Many
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gradient-based optimizers for minimizing f , some of which were mentioned
in Chapter 2, are sequential algorithms generating a series of iterates

xk+1 := Tk(xk), (315)

where Tk : X → X is an update function that depends on the objective f and
typically uses its derivatives. In Chapter 2, we intuitively thought about the se-
ries (xk), k = 0, 1, . . . ,∞ as different positions of a particle rolling downhill on
a the energy function landscape. In this chapter, we seek to make use of classi-
cal, then quantum dynamics to understand the behaviour of the particle on the
optimization landscape.

In classical dynamics [126], the particle follows a predefined curve or flow, that
the iterates (xk) discretize. Contrastingly, in quantum mechanics, as highlighted
by the quantum Hamiltonian descent algorithm (QHD) by Leng et al. [15], the
particle is characterized by a probability distribution across positions and mo-
ments in time. We will simulate the QHD algorithm and apply it to a challenging
non-convex image registration problem.

7.2 Preliminaries

7.2.1 Classical Dynamic of Gradient-based Optimizers

A powerful way to understand the path of the “particle,” as introduced by Wibisono
et al. [126], is by considering the classical dynamic of the particle when it is sub-
jected to external and internal energies.

The Bregman-Lagrangian.

We start by defining a distance metric on the feasible set X :

Definition 7.2.1 (Bregman distance [126])

Let h : X → R be a continuous, differentiable, convex function that satisfies
∥h(x)∥22 →∞ for ∥x∥2 →∞. The Bregman distance is a functionDh : X×X → R

defined as
Dh(x, y) := h(y)− h(x)− ï∇h(x), y − xð . (316)

The function h is called distance generating function.

Now, let X : [0, T ] → X denote the continuous-time curve of the particle that de-
pends on the time t ∈ [0, T ] for some T ∈ N. In classical dynamic, we will define
a function, a so-called Lagrangian, that “captures” the energies in the system over
the time. The notation □t will be used as a short-cut for □(t).

Let
L(t,X, Ẋ) := e³t+µt

(

−´tf(Xt) +Dh(Xt + e−³tẊt, Xt)
)

(317)
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be that function, a smooth function of the time variable t ∈ [0, T ], of the continuous-
time curve X and its temporal derivative Ẋ . Wibisono et al. [126] use the term
Bregman-Lagrangian for the Lagrangian L of the system.

The Bregman-Lagrangian is the sum of the potential energy of the particle, as
described by the objective function f , and its kinetic energy, which is modelled
by the Bregman-distance term Dh : X × X → R. The time-dependent functions
³, ´, µ : [0, T ] → R are freely choosable damping functions satisfying the ideal
scaling condition

˙́
t f e³t and µ̇t = e³t . (318)

The Euler-Lagrange equation.

The laws of classical mechanics [16, 127] force the particle to take the path X
according to the least action principle, which requires that the action functional

S(X) :=

∫ T

t=0

L(t,Xt, Ẋt)dt (319)

of the curve must remain in stationary points throughout the time evolution of
the system. This constraint, which entails setting to zero the derivative of S with
respect toX , captures the equation of motion of the particle in the Euler-Lagrange
equation

∂

dt

(

∂L
∂Ẋ

)

− ∂L
∂X

= 0, (320)

which – for the Bregman-Lagrangian L and under the ideal scaling conditions
in Equation (318) –reduces to the Bregman flow

Ẍt + (e³t − ³̇t)Ẋt + e2³t+´t
[

∇2h(Xt + e−³tẊt)
]−1 ∇f(Xt) = 0. (321)

If f is convex, the following theorem states that, in ideal scaling conditions, the
Bregman flow indeed conduces the particle to the minimizer x⋆ of f :

Theorem 7.2.1 (Convergence of the Bregman flow [126, Theorem 1.1])

If the ideal scaling conditions Equation (318) are satisfied and f is convex, then
the solution of the Bregman flow in Equation (321) satisfies

f(Xt)− f(x⋆) f O(e−´t). (322)

Proof : See Wibisono et. al [126].

Discussion.

An inherent limitation of gradient-based optimizers, as evident from Equation (321),
is that the generating flows drive the particle to stationary points of the action
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functional, such that the particle should stop rolling when the gradient ∇f(Xt)
of f at the current position Xt of the particle vanishes, as we then lose any in-
formation about possible decent directions of f . In many practical optimization
problems, the function f is non-convex and can have many such points, ranging
form local minimizers, saddle points, to even local maximizers, at which the flow
can thus get stuck.

7.2.2 Quantum Hamiltonian Descent

Quantum Hamiltonian Descent (QHD), introduced by Leng et al. [15], is a promis-
ing quantum method for escaping local minima and finding globally optimal so-
lutions. In a way, the method can be seen as building on quantum dynamics; we
will provide a brief overview in this section.

Unlike classical mechanics, where the rolling particle possesses, at each time step
t, a defined position Xt ∈ X and velocity Ẋt, in quantum mechanics, the lo-
cation of the particle at each time is only known in terms of a complex-valued
wave-function È(x, t), whose squared modulus is the probability of observing
the particle at each point.

In this quantum-mechanical setting, we are interested in the evolution of the par-
ticle from a point a = X(ta) at time ta to b = X(tb) at time tb. Intuitively, not only
paths minimizing the action S and satisfying the Euler-Lagrange equation, but
all trajectories contribute to the evolution from a to b [16, Section 2-2].

The transition probability of this is

p(a, b) := |K(b, tb; a, ta)|2 , (323)

where
K(b, tb; a, ta) ∝

∑

path X from a to b

e(i/ℏ)S(X) (324)

is a so-called propagator. We refer to the discussion by Feynman [16, Section 2-4]
for a precise mathematical understanding of the sum over paths.

For simplicity, we assume that the position variable x is one-dimensional, but the
results can be generalized to more dimensions. The wave function È(x, t) at time
tb is constructed as

È(x, tb) =

∫

R

K(x, tb; y, ta)È(y, ta)dy, (325)

which can be regarded as a convolution of the wave function at time ta with the
propagator kernel [16, Equation 3.42] .
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Derivation of the QHD Hamiltonian.

The evolution of the wave function is fully described by a Hamiltonian H(t) driv-
ing the Schrödinger equation

iℏ
∂

∂t
|È(x, t)ð = H(t) |È(x, t)ð . (326)

The core idea of QHD [15] is to construct a Hamiltonian H(t) that forces the wave
function to collapse at the position x⋆ minimizing the function f . We briefly re-
view this construction next, referring the reader to [15, Appendix A] for a full
discussion.

In QHD, a Lagrangian in defined as

L(t,Xt, Ẋt) := −eÇtf(Xt) + e−φt

(

1

2
∥Ẋt∥2

)

, (327)

which is a special case of the Bregman-Lagrangian with the damping functions
φt = ³t − µt, Çt = ³t + ´t + µt and h(·) = ∥ · ∥2. With this choice of damping
functions, the QHD ideal scaling condition requires that limt→∞ eφt/Çt = 0, in
which case the kinetic energy is gradually drained out from the system.

If we consider an infinitesimal time evolution from ta = t to tb = t + ϵ, then the
state of the wave function sightly changes from Xt = x to Xt+ϵ = y = x+ ¸, and:

1. The damping functions φ and Ç can be treated as constants,

2. The action is approximately ϵ times the Lagrangian:

S(X) = ϵ · L
(

t,
x+ y

2
,
x− y

2

)

(328)

3. The propagator can by evaluated by

K(x, t; y, t+ ϵ) =
1

A
exp

{

i

ℏ
· ϵ · L

(

t,
x+ y

2
,
x− y

ϵ

)}

, (329)

where A is a constant normalization factor.

Plugging this together into Equation (325) with the change of variable y 7→ x+ ¸
allows to write the wave function as:

È(x, t+ ϵ) =

∫

R

1

A
exp

{

i

ℏ
· ϵ ·

(

−eÇtf
(

x+
¸

2

)

+ e−φt

(

¸2

2ϵ2

))}

È(x+ ¸, t)d¸.

(330)

We approximate from Equation (330) the exponential term of the potential energy
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and the potential energy itself as

exp

(

− iϵ
ℏ
· eÇtf

(

x+
¸

2

)

)

≈ 1− iϵ

ℏ
· eÇtf

(

x+
¸

2

)

+ . . . , (331)

f
(

x+
¸

2

)

≈ f(x) + ¸
∂

∂¸
f(x) + . . . . (332)

Keeping only the first two terms of Equation (331) and the first term of Equa-
tion (332), it turns out that

È(x, t+ ϵ) ≈
∫

R

1

A

{(

1− iϵ

ℏ
· eÇtf(x)

)

· exp
(

−e
−φt

2iℏϵ
¸2
)}

È(x+ ¸, t)d¸. (333)

The next step is to approximate the wave function in time using a first-order
Taylor approximation, and in space using a second-order Taylor approximation:

È(x, t+ ϵ) ≈ È(x, t) + ϵ · ∂
∂t
È(x, t) (334)

È(x+ ¸, t) ≈ È(x, t) + ¸ · ∂
∂x
È(x, t) +

¸2

2
· ∂

2

∂x2
È(x, t). (335)

With Equations (334) and (335), we can write Equation (333) as

È(x, t) + ϵ · ∂
∂t
È(x, t) ≈ 1

A

(

1− iϵ

ℏ
· eÇtf(x)

)

·
{

C1È(x, t) + C2
∂

∂x
È(x, t) + C3

∂2

∂x2
È(x, t)

}

, (336)

where

C1 :=

∫

R

exp

(

−e
−φt

2iℏϵ
¸2
)

d¸ =
√
i2Ãℏϵeφt , (337)

C2 :=

∫

R

¸ exp

(

−e
−φt

2iℏϵ
¸2
)

d¸ = 0, (338)

C3 :=

∫

R

¸2

2
exp

(

−e
−φt

2iℏϵ
¸2
)

d¸ =
iℏϵeφt

2

√
i2Ãℏϵeφt . (339)

We solve for the constant A by equating the coefficients of the ϵ0-term of Equa-
tion (336) and considering only the first term of the approximation w.r.t. ¸, yield-
ing

È(x, t) =
C1

A
È(x, t), (340)
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hence A =
√
i2Ãℏϵeφt . This simplifies Equation (336) to

È(x, t) + ϵ · ∂
∂t
È(x, t) ≈

(

1− iϵ

ℏ
· eÇtf(x)

)

·
{

È(x, t) +
iℏϵeφt

2

∂2

∂x2
È(x, t)

}

. (341)

Finally, by equating the ϵ1-terms it turns out that

iℏ
∂

∂t
È(x, t) =

(

eÇtf(x)− ℏeφt

2

∂2

∂x2

)

È(x, t), (342)

and we see that our desired evolution of the wave function is described by the
Schrödinger equation, with the term in parentheses taking the place of the Hamil-
tonian.

In more dimension, this generalizes to

iℏ
∂

∂t
È(x, t) =

(

eÇtf(x)− ℏeφt

2
∆x

)

È(x, t), (343)

where ∆x is the d-dimensional Laplacian operator.

The following theorem guarantees that in the convex setting, evaluating the en-
ergy of the system at the end of the quantum evolution yields the minimal value
of f :

Theorem 7.2.2 (Convergence of QHD [15, Theorem 1])

Let f be a continuous differentiable convex function with a unique local min-
imizer x⋆ and the ideal scaling condition Equation (318) holds. Then, for any
smooth initial wave function |È(x, 0)ð, the solution |È(x, t)ð at any time t of the
Schrödinger equation (326) with the Hamiltonian

H(t) := eÇtf + eφt

(

−ℏ

2
∆x

)

(344)

such that Çt = ³t − µt and φt = ³t + ´t + µt satisfies

∫

X
f(x)∥È(x, t)∥2dx− f(x⋆) f O(e−´t). (345)

Proof : See [15, Theorem 1].

In the non-convex setting, it is also shown in [15, Theorem 2] that the wave func-
tion can still converge to the minimizer of f under some extra assumptions re-
quiring in particular that the total evolution time T is large enough, that the pa-
rameters vary slowly enough, and that the evolution stays in a space spanned by
the N eigenstates with the smallest energy [15, Assumptions 1-3].
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Discussion.

The viewpoint above, formulated in [15], provides an interesting perspective that
allows to think of gradient-based descent methods in terms of mechanical dy-
namics. The transition from classical to quantum dynamics potentially allows to
also find global solutions of non-convex problems. In the following section, we
will again consider the inherently non-convex image registration problem and
investigate if it can be solved using the QHD approach.

7.3 Application to Rigid Image Registration

The goal of this section is to apply the QHD method to solving the rigid image
registration problem. In the considered registration problem, two images R, T :
Ω → X of an object are given, where Ω := [0,m]× [0, n] ¢ R

2 is the image domain
and X ¢ R+ the range.

We restrict ourselves to rigid deformations φÉ : R2 7→ R
2,

φÉ(x) :=

(

cos(É1) − sin(É1)
sin(É1) cos(É1)

)

(

x1
x2

)

+
(

É2
É3

)

,

parameterized by the vector É := (É1, É2, É3), where É1 is the rotation angle, and
É2 and É3 form the translation vector.

In order to find the deformation that best aligns the two given images R and T ,
we formulate the “sum-of-squared-differences” (SSD) objective function

SSD(R, T ◦ φÉ) :=
∫

Ω

(R(x)− T (φÉ(x)))
2 dx. (346)

The goal is to minimize this energy over all parameter vectors É := (É1, É2, É3)
¦,

with É1 ∈ [0, 2Ã], É2 ∈ [−m,m] and É3 ∈ [−n, n].

7.3.1 Numerical Simulation

Simulating quantum evolutions requires techniques such as product or Trotteri-
zation formulae as presented in Section 2.6. To numerically represent the wave
function, we have to discretize the Schrödinger equation (326) both in space and
time. The discretization schemes follow [15, Appendices E and F].

Space Discretization.

We use the standard regular grid discretization of continuous spaces. For each
parameter space Ωi = [ai, bi], i = 1, 2, 3, we construct a regular mesh

Mi :=
{

Éji : Éji = ai + j¶i, j = 0, . . . , N − 1
}

, (347)
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where ¶i := bi−ai
N

for some N ∈ N is the step size. For convenience, we will
let N be a power of 2. The spatially discretized wave function is a state vector
|É(t)ð := |É1(t), É2(t), É3(t)ð, constructed by concatenating three registers, each
register |Éi(t)ð :=

∑

Éj

i
∈Mi

cji (t) |Éji ð with i = 1, 2, 3 corresponding to one pa-

rameter of the problem. The second order derivative of the wave function get
discretized with finite differences, which, in practice is computed through the
discrete 3-dimensional Laplace operator.

Time Discretization.

We first rewrite the QHD Hamiltonian H(t) from Equation (344) in the form
H(t) = A(t)H(0) + B(t)H(T ) with

A(t) = eφt , (348)

B(t) = eÇt , (349)

H(0) = −ℏ

2
∆x, (350)

H(T ) = f. (351)

We recall that the final Hamiltonian H(T ) is diagonal in the computational basis,
such that H(T ) |xð = f(x) |xð for some basis state |xð. For the damping functions,
we choose

φ(t) =
2

ϵ+ t3
, and Çt = 2t3, (352)

where ϵ is a small positive constant to avoid the singularity of dividing by 0.
These are the same damping functions as in [15, Equation C.4] and correspond to
the weighting coefficients of Nesterov’s accelerated gradient descent [128].

Time discretization consists in discretizing the continuous time variable t ∈ [0, T ]
into discrete time steps j · T

r
for j = 0, . . . , r and some r ∈ N. Using the tech-

niques from Section 2.6, we know that the unitary evolution of the system can be
approximated by the operator

U(T ) =

r
∏

j=1

e−i
T
r
A(j·T

r
)H(0) · e−iTr B(j·T

r
)H(T ). (353)

The ultimate challenge is now to exponentiate the Hamiltonians in the above
product. This is carried on by using operator functions [12, Section 2.1.8] for nor-
mal matrices. In other words, a given Hamiltonian H with spectral decomposi-
tion H = ΨΣΨ satisfies exp(H) = Ψ exp(Σ)Ψ , where exp(Σ) = diag(exp(Ãx))Nx=1.

Exponentiating the initial Hamiltonian H(0) is simple, as the 1-dimensional Lapla-
cian is a Toeplitz matrix which can be diagonalized – for periodic boundary con-
ditions – by the discrete Fourier transform, which is efficient on quantum com-
puters [12, 129].

Exponentiating the final Hamiltonian H(T ) is straightforward, as it is diagonal.
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Update Rule.

Overall, defining a step size s := T
r

we get the update rule

|É(j + 1)ð = Ψ · exp (−isA (js) Σ) ·Ψ · exp (−isB (js) f) |É(j)ð (354)

j = 0, . . . , r, which is also known as pseudo-spectral method [15, 130] and is the
standard numerical method for Schrödinger equations. In our experiments, we
set T = 1 and r = 105 update steps.

7.3.2 Results

In this section, the QHD algorithm is classically simulated on the rigid image reg-
istration problem. The Laplace operator is implemented with periodic boundary
condition. The images in the experiments are X-ray images of human hands from
the FAIR software package [20].

Results with Rotation Only.

To illustrate the algorithm, we first consider the one-dimensional problem where
we are searching only for the rotation angle, while fixing the translation to zero.

The wave function evolution is depicted in Figure 7.3.1. The rotation domain
[0, 2Ã] is discretized into a 28 = 256-element grid. Clearly, the objective function
is non-convex. We see that the measurement probability of the wave-function
gradually contracts to a sharp peak at the global minimizer, demonstrating how
accurate the QHD algorithm can solve non-convex optimization problems.

The angle with the highest probability of measurement is considered as the min-
imizer of the objective function. For this angle, the registration results are de-
picted in Figure 7.3.2, and can be verified to decrease the objective function value.
However, the accuracy is still limited, due to the fact that the optimization is per-
formed only for the rotation parameter while keeping the translation to zero.

Results with Rotation and Translation.

The 3-dimensional rotation-translation registration problem is solved in a simi-
lar manner as the 1-dimensional rotation-only case, with the exception that the
Laplace operator is higher-dimensional and implemented with Neumann bound-
ary condition. Due to computational constraints, we discretize each parame-
ter space with 24 = 16 basis states: The rotation parameter space is reduced to
[1.8 · Ã, 2Ã], and the translation parameter space is a small [−7, 8]× [−7, 8] region
cropped from the full [−64, 64]× [−64, 64] domain. We evaluate the operator f on
those grid-points and evolve the wave function according to the QHD algorithm.
The solution is computed as the basis state for which the wave function prob-
ability peaks. The visual registration results are presented in Figure 7.3.3 and
can be verified to both globally minimize the objective function and accurately
solve the underlying non-convex registration problem. We conjecture that a finer
discretization would produce even better results.
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Figure 7.3.1: Wave function evolution under the action of the QHD algorithm for the
one-dimensional problem of finding the optimal angle that aligns two images. (Left to
right, top to bottom) In green the evolution of the squared magnitude of the wave
function, i.e., the probability of observing each angle at the final state, and in black the
non-convex objective function. We see that the wave function probability clearly peaks at
the global minimum, indicating the potential of QHD in solving non-convex problems.
The transformations obtained in this way are visualized in Figure 7.3.2.

Discussion.

It is very promising to see that in practice, the QHD method appears to be able to
effectively drive the state towards a peak at the global minimizer even for non-
convex image registration problems.

Simulating the Schrödinger equation as required by the method of course implic-
itly requires an efficient implementation of an operator for evaluating the objec-
tive function on basis states while running the algorithm. In our classical simu-
lation approach, this operator is computed beforehand, which effectively means
computing the objective function for all parameter values on a given grid. This is
certainly not a viable approach for constructing better classical solvers and we do
not claim so; we rather envision that ultimately, the specific Schrödinger equation
will be able to be efficiently simulated on universal quantum computers.

For the method to run on such a universal quantum computer, one could think
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R T and diff(R, T), SSD = 7742890.0

T : Transformed T diff(R, T ), SSD = 4555233.84
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Figure 7.3.2: Registration results using the QHD approach in Figure 7.3.1. (Top row)
Reference image and template image on which the image grids before and after the de-
formation are overlaid, and the difference image before the registration. (Bottom row)
Deformed template image and associated difference image. We see that QHD applied
to this simple but non-convex registration problem finds better registration results com-
pared to the initial situation, but the fact that the optimization is performed only for the
rotation parameter while keeping the translation to zero still limits the accuracy. In Fig-
ure 7.3.3, the registration results for the optimization over the rotation and translation
parameters is presented.

about this operator as an oracle acting on a superposition state and evaluating
the objective function for all basis states in parallel. At the current state of quan-
tum hardware, implementing such an oracle for the image registration problem
would be a serious challenge.

7.4 Conclusion

We have demonstrated the applicability of the quantum Hamiltonian descent [15]
algorithm to the rigid image registration problem. The method works by evolv-
ing the wave function of a quantum system in order to bring the system in a
state with the smallest potential energy, which corresponds to the minimal value
of the objective function to minimize. For running on a universal quantum ma-
chine, the method requires the implementation of an efficient quantum oracle
capable to evaluate the objective function on basis quantum states. We classically
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R T and diff(R, T), SSD = 7742890.0
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Rigid registration
Rotation about 5.75 Rad of image center and Translation about (1.0, 5.0) pixels.

Figure 7.3.3: Registration results using the QHD approach in Figure 7.3.1 for the 3-
dimensional case. (Top row) Reference image and template image on which the image
grids before and after the deformation are overlaid, and the difference image before the
registration. (Bottom row) Deformed template image and it associated difference image.
We see that QHD applied to this simple but non-convex registration problem finds a
visually very accurate registration despite the local minima.

simulated the algorithm and found that it is robust in solving the non-convex
registration problem, as it escapes local minima and target the global solution.
We hope that our results motivate further research on efficient quantum image
representations and transformations for image processing problems, to benefit
from the full potential of quantum optimization.
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CHAPTER 8

Conclusion

In this thesis, we have introduced several quantum algorithms with applications
in image processing. The main focus has been on deriving new mathematical
models and optimization methods amenable to quantum computation for solv-
ing binary combinatorial and image registration problems.

• Variational Quantum Computing.

We developed in Chapter 4 a hybrid quantum-classical variational quan-
tum algorithm for solving the Ising problem. Our proposed UQIsing al-
gorithm efficiently block-encodes the Ising problem into a unitary opera-
tor acting on a parameterized ansatz. We then used gradient descent for
optimizing a set of rotation angles to bring the ansatz into the basis-state
that locally solves the optimization problem. The resulting circuit is low-
depth, and requires a one-to-all qubits connectivity, properties which are
compatible with actual noisy intermediate scale quantum devices. Due to
the non-convexity of the resulting objective function, the method does not
guarantee to return a global optimum, but experimentally finds at least a
good approximation.

• Quantum Amplitude Amplification.

Moving from hybrid to fully-quantum approaches, we introduced in Chap-
ter 5 a fully universal quantum algorithm for solving the Ising problem.
The proposed PM-NBAA method employs quantum amplitude amplifica-
tion techniques to iteratively amplify the probability of the state encoding
the solution of the problem. At the end of an optimal number of iterations,
it guarantees that the quantum system collapses into the optimal state with
a higher probability than for any non-optimal state.
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• Adiabatic Quantum Computing.

We introduced in Chapter 6 an iterative quantum algorithm for iteratively
estimating rigid transformation from point sets using adiabatic quantum
computing. Our proposed IQT algorithm operates on the Lie algebra of ro-
tation matrices. The method performs well on several 2D and 3D point sets,
and robustly aligns the points even in the presence of outliers. In contrast
to the existing QUBO-based approach for the task, it guarantees to deliver
consistent and orthogonal rotation matrices, and provides higher accuracy.

• Quantum Hamiltonian Descent.

We explored in Chapter 7 the quantum Hamiltonian descent (QHD) algo-
rithm as promising method for solving the non-convex rigid image regis-
tration problem. We classically implemented and simulated the algorithm,
and found that it accurately converges towards a global solution of the
problem.

Future Work.

The algorithms developed in this thesis leave some questions unanswered, re-
vealing what can and should be done to unlock the potentials of quantum com-
puting for solving image processing problems.

The performance of the UQIsing algorithm for solving the Ising problem still
depends on the quality of the underyling classical optimization scheme, and it is
easy to imagine that advances in this area can lead to better solutions. Similarly,
warm-start techniques could be derived to prepare the ansatz in a better initial
state for reaching global convergence.

The most important unanswered question regarding the PM-NBAA method con-
cerns the stopping criterion: The iteration should be stopped when the cos(θk)
term – corresponding to a weighted average – becomes negative. The big ques-
tion here is how to find an explicit expression for the number of iterations when
this happens, and we have to leave this for future work.

The IQT method could be extended and applied to other constrained optimiza-
tion problems with Lie algebra structure such as optimizations problems over
permutation matrices. Also, the practical availability and trajectory of AQC hard-
ware size for solving QUBOs could make it feasible to solve realistic even less
restricted – most importantly, non-linear – image registration problems using the
method in near- to mid-term.

Applying the QHD algorithm to realistic image processing and optimization prob-
lems requires developing low-costs quantum image representations and trans-
formation methods, both universal and adiabatic, and possibly quantum devices
capable to evolve the wave function under arbitrary Hamiltonian operator on
the hardware level. While this will certainly have a longer time horizon before
practicability, it is theoretically probably the most exciting avenue.
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