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Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiac image reg-
istration is a valuable tool for analysing cardiac health and detecting cardiac diseases.
Many state-of-the-art registration algorithms use iterative optimisation between images
and do not benefit from the advantages offered by machine learning.

In this thesis, we implement, extend, and validate the learning-based moving mesh
approach for deformable cardiac image registration as proposed by Sheikhjafari et al.
Besides the original U-Net-based architecture, we also extend the method by replacing
the U-Net with an implicit neural representation. A crucial part of the moving mesh
approach is the constraining of the monitor function that parameterises the deformation
field. To address this, we investigate a custom activation function to enforce one of two
constraints on the monitor function.

Additionally, we evaluate four methods, including a newly developed scaling method,
for enforcing the second constraint on the monitor function. In order to solve the re-
sulting Poisson equations, we implement a Fast Fourier-based solver and validate its
efficiency, robustness, and accuracy. The overall method is evaluated on a benchmark
data set.

Kurzfassung
Kardiovaskuläre Krankheiten stellen die weltweit führende Todesursache dar. Bildre-
gistrierung von Aufnahmen des menschlichen Herzens ist ein wertvolles Instrument, um
Herzerkrankungen zu entdecken. Viele aktuelle Registrierungsverfahren basieren auf it-
erativen Optimierungsverfahren und profitieren daher noch nicht von den Vorteilen des
maschinellen Lernens. In dieser Arbeit wird ein von Sheikhjafari et al. vorgeschlagener
lernbasierter Moving Mesh-Ansatz zur deformierbaren Registrierung kardialer Daten im-
plementiert, erweitert und validiert.

Neben dem ursprünglichen U-Net-basierten Ansatz wird auch eine implizite neuronale
Erweiterung vorgestellt. Ein zentraler Teil des Moving Mesh-Ansatzes ist das Beschränken
der Monitorfunktion, die das Deformationsfeld parametrisiert. Zu diesem Zweck wird
eine neue Aktivierungsfunktion entwickelt, die eine der beiden erforderlichen Bedingun-
gen erzwingt.

Weiterhin untersuchen wir vier Ansätze – einschließlich einer neu entwickelten Ska-
lierungsmethode – um die zweite Bedingung sicherzustellen. Um die auftretenden Pois-
songleichungen zu lösen, wird ein Fast Fourier-basierter Löser implementiert und hin-
sichtlich Effizienz, Robustheit und Genauigkeit analysiert. Das vollständige Registrie-
rungsverfahren wird auf einem Benchmark-Datensatz evaluiert.
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1
Introduction
1.1 Motivation
According to the World Health Organisation, cardiovascular diseases take approximately
18 million lives each year, making them the leading cause of death worldwide [28, 70, 86].
Effective diagnostics can facilitate the early detection of cardiac diseases and therefore
prevent many deaths. For the detection of cardiac diseases, the precise quantification of
cardiac motion and deformation is needed [28].

The heart consists of four chambers: the right atrium, the left atrium, the right ven-
tricle, and the left ventricle (LV), which are displayed in figure 1.1a. The cardiac cycle
is divided into two phases, the systolic phase and the diastolic phase. At the end of
the diastolic phase (ED), the LV is entirely filled and contains the maximum volume of
blood during the cardiac cycle, whereas at the end of the systolic phase (ES), it con-
tains the minimum volume of blood. Cardiac images of the two phases are displayed in
figure 1.1b, showing the variation of the LV during the cardiac cycle.

For many diagnostics, the LV is a region of particular interest [28]. Typical diagnostic
indicators, such as the LV volume and the LV mass, provide insights into the global
heart function and can be used to analyse the cardiac contractile function [61]. Key
diagnostic indicator, such as LV volume and LV mass, can be analysed by comparing
the LV during different phases of the cardiac cycle. Understanding cardiac motion is
essential for an accurate analysis of the LV. The heart’s motions can be divided into two
main types: radial expansion and twisting [28]. Therefore, the heart’s movement can be
described by radial and rotational movement [7].

To analyse the previously mentioned diagnostic indicators, clinicians often compare
two or more cardiac images manually, which is inaccurate and slow. As imaging tools
such as magnetic resonance imaging (MRI) have become the reference tool for cardiac
imaging [61], the amount of cardiac data to analyse is rising, increasing the need of an
efficient tool to compare such images. This task can be efficiently accomplished with
image registration.

Image registration is the task of finding coordinate transformations between two or
more images such that corresponding structures are aligned. Cardiac image registra-
tion plays an important role in supporting diagnostics and monitoring the progression
of cardiac diseases [50, 54]. Despite the rise of machine learning in many fields, in the
field of image registration, iterative algorithms are the state-of-the-art algorithms when
it comes to accuracy of the registration as well as computational performance [75]. Ap-
proaches using machine learning algorithms are typically supervised, and therefore rely
on a ground truth in the training process. Although these algorithms have shown great
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1 Introduction

(a) Exemplary full size short-axis MR
slice. The red box indicates the region of
the heart. Some anatomical structures of
the heart are shown.

(b) Example of two cardiac short-axis MR slices cut-
outs of the heart at the end-diastolic phase (left) and
the end-systolic phase (right). The volume variation of
the left ventricle during the cardiac cycle is observable.

Figure 1.1: Examples of short-axis MR images of a heart (illustration credit [61]).

performance, in reality, data sets often do not contain the needed labels. Therefore,
unsupervised methods play an important role in developing such data-driven methods
in order to speed up the clinical workflow.

In 2022, Sheikhjafari et al. proposed an approach for cardiac image registration us-
ing an unsupervised machine learning approach [75], referred to as the moving mesh
approach. A key feature of the approach is the parameterisation of the deformation
field into radial and rotational movement, thus matching the motion of the heart. They
applied their approach to the registration of the LV at the ED and the ES phase and
achieved promising registration results.

The aim of this thesis is the validation and extension of the moving mesh approach
for deformable image registration proposed by Sheikhjafari et al. in 2022 [75]:

• The first contribution is the implementation and validation of the approach by
Sheikhjafari et al.

• As the original publication is missing key details on constraining the monitor func-
tion, a crucial part of the moving mesh approach, a second contribution of this
thesis is to develop new approaches to satisfy these constraints, including a new
activation function.

• The moving mesh approach includes solving two partial differential equations. For
this, as a third contribution, a fast Fourier-based Poisson solver was implemented
and tested.

• Finally, the approach is augmented with implicit neural representation.
The implementation and proposed extensions are experimentally verified on a benchmark
dataset.

1.2 Related Work
Moving Mesh Generation
The moving mesh approach for cardiac image registration originates in adaptive grid gen-
eration for solving partial differential equations. In 1965, Moser studied the existence
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1 Introduction

of volume-preserving diffeomorphisms between different volume elements on the same
Riemannian manifold [56]. Liao et al. proposed a new method for adaptive grid genera-
tion in 1992, based on Moser’s studies, referred to as moving mesh generation [45, 46].
Their proposed method constructs a diffeomorphic mapping to adapt two- and three-
dimensional grids. The mapping is parameterised by the monitor function that controls
the cell volumes by describing the Jacobian determinant of the sought mapping, and a
vector field with a divergence matching the monitor function. The deformation field is
computed by solving an ordinary differential equation that is defined by a velocity field,
which is established from the vector field. They provided a proof that a diffeomorphic
deformation field exists, which has a Jacobian determinant equal to the monitor func-
tion. In 2006, Liu further proposed new methods to establish such vector field, including
an approach that solves a set of Poisson equations to compute the vector field [47].

Moving Mesh-Based Image Registration
Several approaches to apply the moving mesh generation for deformable image reg-
istration have been proposed. Chen et al. applied the moving mesh generation to
cardiac image registration [14]. In their method, the deformation field is parameterised
with the moving mesh parameterisation using the Jacobian determinant and the velocity
field. The proposed method establishes the final deformation field by iterative step-then-
correct optimisation between images. They applied their approach to the registration of
two-dimensional short-axis cardiac MR images to register the myocardial delineation of
images from different phases of the cardiac cycle.

Their technique finds application in cardiac registration, such as the analysis of cardiac
performance by Cheng et al. in 2015 and Zhang et al. in 2021 [17, 91]. Although the
parameterisation is initially designed for cardiac image registration, their approach is also
applied in non-medical contexts, such as the improvement of the quality of imaging of
Mars rovers cameras that are used to analyse the geology and environment on Mars [21].
As the Mars rover uses two cameras, the images are aligned with the registration method
proposed by Chen et al. to obtain one image.

Based on the ideas of Chen et al., Punithakumar et al. proposed similar registration ap-
proaches between 2013 and 2017. The proposed framework finds point correspondences
in two-dimensional cardiac images to analyse the left ventricle and the right ventricle in
MR images with step-then-correct optimisation strategy, using iterative optimisation to
establish the deformation field [63, 64, 65].

Krishnaswamy et al. applied the moving mesh parameterisation to left ventricle seg-
mentation for three-dimensional cardiac MRI and ultrasound images. The resulting
optimisation problem to establish the deformation field is solved with an iterative step-
then-correct algorithm [42].

In 2022, Sheikhjafari et al. adapted the registration approach by Chen et al. from
an iterative approach to an unsupervised machine learning approach using a U-Net to
perform the registration [75]. To the best of our knowledge, this was the first approach
combining machine learning and the moving mesh method. Their approach utilises a
U-Net learning a representation of the monitor function and a vector field, which are
used to perform the moving mesh approach. They validated their approach with the
registration of two- and three-dimensional cardiac MR images of the left ventricle.

They also applied their registration approach to the supervised segmentation of the left
ventricle on two-dimensional and three-dimensional images [77]. This approach lowers
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1 Introduction

the time needed for manual segmentation by automatically computing segmentation of
unseen images from one given segmentation.

The moving mesh parameterisation is also applied in other medical areas. Chu et
al. applied the moving mesh parameterisation to the deformable registration of three-
dimensional MR slices of breast images for breast cancer detection [18]. Similarly, Hsiao
et al. modified the moving mesh approach for the non-rigid registration of the brain
images [37].

Implicit Neural Representation
Implicit Neural Representation (INR) is commonly used to parameterise continuous sig-
nals, such as images, using an artificial neural network that maps spacial coordinates to
corresponding intensity values [87]. Unlike conventional methods, the image’s intensity
values can be computed at arbitrary coordinates without using interpolation. Addition-
ally, the limitations of discrete representations, such as limited memory, especially for
large inputs, are avoided.

Notable advancements in expressiveness of INR have been achieved by Sinusoidal
Representation Network (SIREN), proposed by Sitzmann et al. in 2020 [78]. By using
periodic activation functions, SIREN demonstrates potential for the representation and
reconstruction of three-dimensional shapes, due to their resolution independence and
smooth encoding of the input features.

INR is frequently used to solve visual computing tasks, including image registra-
tion [55]. Wolterink et al. proposed INR-based image registration method in 2022,
using a SIREN-based approach for intensity-based deformable image registration [85].
In their approach, for given input image coordinates, the output is the coordinate’s
displacement rather than the deformed image. Their approach was evaluated on four-
dimensional computed tomography chest images, demonstrating better results than other
tested learning-based methods.

In 2023, Byra et al. proposed another INR framework for implicitly learning the de-
formation fields [11]. Their approach has shown superior performance in comparison
to state-of-the-art deep learning image registration frameworks for deformable image
registration on three-dimensional brain MRI.

Sun et al. presented a framework for diffeomorphic image registration using INR in
2022 [81]. Their method can be used for two distinct registration approaches, allowing
the modelling of displacement fields as well as velocity fields. For the latter case, the
deformation field is generated by integrating the vector field using a neural ordinary dif-
ferential equation solver. The framework was tested on two three-dimensional datasets,
yielding comparable results to state-of-the-art registration methods.

Most INR registration methods are similar to pairwise optimisation, thus requiring
individual optimising for each unseen image pair. Zimmer at al. address this by exploring
generalising methods to avoid the training of an individual representation for each new
image pair, trying to make INR registration more suitable for large data sets [93].

1.3 Outline
This thesis consists of seven chapters, which are structured as follows. In chapter 2, the
fundamentals for machine learning based cardiac image registration are laid. First, the
basics on cardiac image registration are explained. Then, the mathematical foundations
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are laid, covering the two main topics vector field properties and differential equations.
The next section is on image registration, covering the image registration various ap-
proaches, discretisation and interpolation methods. Finally, the machine learning basics
are explained.

An overview of the moving mesh approach is provided in chapter 3. First, the origin
of the moving mesh approach for diffeomorphic grid generation is discussed. Then,
a proof is provided, showing that the deformations field computed with the moving
mesh approach has the anticipated predefined Jacobian determinant. After that, the
application of the moving mesh approach on an image registration problem is explained.
Lastly, we provide details on our implementation and the augmentation of the moving
mesh appraoch.

Different approaches to constrain the monitor function, a crucial part of the moving
mesh approach, are provided in chapter 4. This includes the development of a new
scaling method and a new activation function.

The validation of the moving mesh approach is discussed in chapter 5 and covers the
following topics. First, the data sets and the evaluation metrics for the quantitative
analysis of the registration are introduced. After that, the accuracy and the run time
of the fast Fourier solver is analysed. Then, the registration results using a U-Net and
implicit neural representation – both tested with different approaches to constrain the
monitor function – are discussed.

Finally, chapter 6 summarises this work and provides an outlook.
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2
Preliminaries
In this chapter, the fundamental basics of learning-based cardiac image registration are
laid. This includes a brief study of the cardiac image generation, some mathematical
preliminaries, image registration basics, and machine learning foundations.

As this thesis addresses the topic of cardiac image registration, we briefly introduce
cardiac image generation in section 2.1.

The mathematical foundations to understand the moving mesh approach and image
registration are laid in section 2.2. The section covers the main topics vector fields,
differential equations and the discretisation of the Poisson equation.

Then, we introduce the image registration problem in section 2.3. This includes the
concept of images and their discretisation as well as interpolation methods. Follow-
ing, the image registration problem is outlined, followed by a discussion of different
approaches to image registration and comparisons between them. The section concludes
with an examination of regularisation, diffeomorphisms and the large deformation dif-
feomorphic metric mapping approach.

A this thesis focus lies on learning-based image registration, we present the fundamen-
tal concepts of machine learning in the final section 2.4. The section covers the following
four concepts: an overview of artificial neural networks, followed by the basic concept
of convolutional neural networks, the description of U-Nets, and an introduction to im-
plicit neural representation. Finally, the use of machine learning in image registration is
discussed.

2.1 Cardiac Image Generation
This thesis addresses the topic of cardiac image registration. To provide a foundational
understanding, we offer a brief overview of cardiac image generation.

Magnetic resonance imaging (MRI) is one of the main imaging techniques for obtaining
cardiac images. It can be used to discover and follow up diseases such as myocardial
ischemia or infraction, as well as for planning or supporting clinicians during surgery,
and to analyse the cardiac mass [29]. A benefit of MRI is that information on a patient’s
heart can be acquired non-invasively, making it the reference standard for evaluating
cardiac function [84].

Cardiac image acquisition comes with certain challenges. The heart is an organ
with a large variation in size due to the rapid motion of the heart beat. During a
full cardiac cycle, the heart valvular plane that is connected to the LV moves up to
14 mm towards the apex and the myocardial walls thickness can vary up to 15 mm [68].
Obtaining MR images is a slow process, taking up to 90 minutes. Although patients are

6



2 Preliminaries

Figure 2.1: Schematic illustration of image acquisition of cine MRI [51]. The imaging
process is aligned to the patient’s ECG. The ECG shows distinct electric activities P, Q,
R and T, for example at the end of the systolic phase (T) and at the end of the diastolic
phase (R). By combining images of different heart cycles with the same ECG activity,
the final image is obtained.

repeatedly asked to hold their breath for short periods of time for the image acquisition
to slow down their heart beat, the image acquisition remains too slow, as the heart beats
approximately once every second. To address this issue, the image acquisition process
is split. This process is known as cine MRI. Cine MRI gathers only little image infor-
mation from each cardiac phase and repeats this process over several cardiac cycles to
reconstruct a full image [67]. To obtain accurate images of the different cardiac phases,
the acquired images are aligned to the electrocardiogram (ECG) of the patient that is
acquired simultaneously to the imaging process [67]. Figure 2.1 shows the process of
obtaining images aligned to the ECG signals of an entire heart cycle.

Cardiac imaging is typically conducted from three different perspectives, the horizon-
tal long axis, the vertical long axis imaging, and the short-axis (SAX). The different
perspectives are displayed in figure 2.2. Each perspective highlights specific features of
the heart. If the LV is the region of interest, acquiring short-axis images is optimal, as
the LV is particularly prominent in these images [29].

2.2 Mathematical Preliminaries and Differential Equations
In this section, we provide a review of vector field properties and differential equations.
Generally, deformation fields in image registration are modelled as vector fields. In
the moving mesh approach, these fields are parameterised by their divergence and curl.
Thus, we begin by introducing these concepts as well as other related principles.

Additionally, we examine differential equations as they are a crucial part of the mov-
ing mesh approach, particularly focusing on solving ordinary differential equation and

7



2 Preliminaries

(a) The three planes for cardiac MRI: the horizontal (coronal) and vertical (sagit-
tal) long-axis planes, and the short-axis (axial) plane.

(b) Illustration of the three different planes for cardiac MR imaging. Each imaging
plane shows different regions of the heart, the short-axis MR images show the left
ventricle prominently.

Figure 2.2: Comparison of long- and short-axis MR images for cardiac imaging (illus-
tration credit [29]).

8



2 Preliminaries

Poisson equations. A main contribution of this thesis is the implementation of a fast
Fourier Poisson solver, as we take a closer look at the Poisson equation, including its
discretisation.

2.2.1 Properties of Vector Fields

We begin this section with the definition of vector fields:

Definition 2.1 (Vector Fields). Let Ω ⊆ Rn be an open subset. A vector field V , with
V : Ω → Rn, ξ = (ξ1, . . . , ξn) 7→ (V1(ξ), . . . , Vn(ξ))⊤, is a mapping that assigns an Rn

vector to every ξ ∈ Ω.

Vector fields are used to describe physical phenomena, such as fluid movements. They
play a crucial role in the field of differential equations. As differential equations play an
important role in this thesis, certain differential operators are needed:

Definition 2.2 (Gradient of a Scalar Field). Let f : Rn → R be a differentiable scalar
function. The gradient of f at ξ = (ξ1, . . . , ξn) ∈ Ω, Ω ⊆ Rn, is defined as

∇f(ξ) :=


∂f
∂ξ1

(ξ)
...

∂f
∂ξn

(ξ)

 , (2.1)

where the i-th entry of ∇f contains the partial derivative of f in ξi direction. The
resulting gradient is a vector field, ∇f : Rn → Rn.

Often, functions that are differentiable and have continuous derivatives are of partic-
ular interest. These functions can be characterised as follows:

Definition 2.3 (Ck-Functions). A function f : Ω → R with Ω ⊆ Rn is considered to be
of differentiability class Ck(Ω) if it is at least k-times continuously differentiable.

The divergence of a vector field indicates how much a vector field expands or shrinks
at any given point.

Definition 2.4 (Divergence of a Vector Field, [9, § 40]). Let V be a differentiable vector
field, i.e. V : Ω → Rn, V (ξ) = (V1(ξ), . . . , Vn(ξ))⊤ with Ω ⊆ Rn. The divergence of V at
ξ ∈ Ω, is defined as

divV (ξ) := ∇ · V (ξ) =
n∑

i=1

∂

∂ξi
Vi(ξ). (2.2)

The divergence is a scalar field. It is used to describe radial movement, as the diver-
gence is the volume density of the outward flux. A positive divergence at every point
indicates outward flux, whereas an entirely negative divergence indicates inward flux.

The curl – also known as the rotor – of a vector field describes the circulation density
of each point of a vector field:

Definition 2.5 (Curl of a Vector Field, [9, § 40]). Let V be a differentiable two- or
three-dimensional vector field, i.e., V : Ω → Rn, V (ξ) = (V1(ξ), . . . , Vn(ξ))⊤ for Ω ⊆ Rn

9



2 Preliminaries

with n = 2 or n = 3. The curl of V at ξ ∈ Ω, is defined as

curlV (ξ) := ∇ × V (ξ), (2.3)

leading to the curl of a three-dimensional vector field as

curlV (ξ) =
(
∂

∂ξ3
V2(ξ) − ∂

∂ξ2
V3(ξ)

)
e1

+
(
∂

∂ξ1
V3(ξ) − ∂

∂ξ3
V1(ξ)

)
e2 +

(
∂

∂ξ2
V1(ξ) − ∂

∂ξ1
V2(ξ)

)
e3, (2.4)

where ei, i = 1, . . . , 3, denotes the i-th unit vector.
If V is a two-dimensional vector field, all terms containing V3 and ξ3 vanish [47], thus

the curl reduces to

curlV (ξ) =
(
∂

∂ξ2
V1(ξ) − ∂

∂ξ1
V2(ξ)

)
. (2.5)

For the Poisson equation that is introduced in the next section, the Laplacian is needed.
The Laplacian of a function is given by the divergence of the gradient, which is the sum
of all second partial derivatives:

Definition 2.6 (Laplacian). Let f : Ω → R,Ω ⊆ Rn, be a twice-differentiable scalar
field. The Laplacian of f at ξ, ξ ∈ Ω, is defined as

∆f(ξ) := ∇ · ∇f(ξ) = div(∇f)(ξ) =
n∑

i=1

∂2f

∂ξ2
i

(ξ). (2.6)

2.2.2 Differential Equations

Differential equations show a relation of an unknown function and its derivative. They
play an important role in the moving mesh approach. Therefore, this section covers
ordinary differential equations and partial differential equations as well as their numerical
solutions.

Ordinary Differential Equations
An ordinary differential equation (ODE) is an equation containing an unknown func-
tion y of one variable and its derivatives:

Definition 2.7 (Ordinary Differential Equation, c.f. [2]). Let f : Ω → Rn be a function
with Ω ⊆ R1+(k+1)n and k ≥ 1. An equation of the form

f(u(k)(ξ), . . . , u′′(ξ), u′(ξ), u(ξ), ξ) = 0 for ξ ∈ Ω, (2.7)

is called an ordinary differential equation of k-th order, where u : Ω → R is the unknown
function and u(i), i = 1, . . . , k denotes the i-th derivative of u. If an additional condition
in the form of u(ξ0) = u0 for an ODE is given, it is referred to as an initial values
problem.

10
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For the moving mesh approach, two initial value problems of the form

u′ = f(t, u) (2.8)

must be solved. In this thesis, the Runge-Kutta method is the preferred scheme; the
reason for this is discussed in 3.4.2.

The method was initially proposed by Runge in 1895 [72]. The version commonly
referred to as the Runge-Kutta method today, and the one we use in this thesis, is a
slight modification of the original method introduced by Kutta in 1901. It is also known
as the Runge-Kutta method with 3/8 rule [43].

Remark 2.8 (Runge-Kutta-Method with 3/8 rule [43]). Given is an initial value prob-
lem of the form (2.8) with the initial condition u(t0) = u0. Let n be the number of
time steps, let h be the fixed step size, let ti denote the i-th time step. The approximate
solution ui at the i-th time step is defined iteratively by

ui+1 = ui + 1
8(k1 + 3k3 + 3k3 + k4) (2.9)

with

k1 = hf(ti, ui),

k2 = hf(ti + 1
3h, ui + 1

3k1),

k3 = hf(ti + 2
3h, ui + 2

3k2),

k4 = hf(ti + h, ui + k3).

(2.10)

The global accumulated error between the computed and the analytical solution is of order
O(h4).

Partial Differential Equations
A partial differential equation (PDE) is an equation between an unknown function with
two or more variables and its partial derivatives. The formal definition is as follows:

Definition 2.9 (Partial Differential Equation, [24, Chapter 1]). Let Ω be an open subset
of Rn, let k ≥ 1. An expression of the form

F (Dku(ξ), Dk−1u(ξ), . . . , Du(ξ), u(ξ), ξ) = 0 for ξ ∈ Ω, (2.11)

where Dku denotes the k-th derivatives of u, is called a k-th-order partial differential
equation, where

F : Rnk × Rnk−1 × . . .× Rn × R × Ω → R (2.12)

is given, and

u : Ω → R (2.13)

is the unknown.

11
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Usually, the behaviour of the unknown function on the domain’s boundary, in this
thesis denoted by ∂Ω, is given. A commonly used boundary condition is Dirichlet’s
boundary condition:

Definition 2.10 (Dirichlet’s Boundary Condition, c.f. [24, Chapter 6]). The require-
ment

u(ξ) = g(ξ) on ∂Ω (2.14)

for given g is referred to as Dirichlet’s boundary condition. For g(ξ) = 0, the boundary
condition is referred to as homogeneous Dirichlet boundary condition.

2.2.3 The Poisson Equation and Its Discretisation

The Poisson equation is a second-order PDE that establishes a relation of a function and
the Laplacian of the multi-variable unknown function. For the application of the moving
mesh approach, a set of discrete Poisson equations with homogeneous Dirichlet boundary
conditions needs to be solved. In this section, we lay the focus on the discretisation of
the Poisson equation and the Fourier approach for its numerical solution. In this thesis,
we need to solve the two-dimensional Poisson equation, therefore, the focus lies on the
two-dimensional discretisation.

To discretise the two-dimensional Poisson equation, the continuous two-dimensional
Poisson equation is needed. It is defined as follows:

Definition 2.11 (The Poisson Equation [33]). Let Ω be an open subset of R2 and
u ∈ C2(Ω) ∩ C0(Ω). Let f ∈ C0(Ω) and g ∈ C0(∂Ω). If u fulfils

−∆u = f in Ω
u = g in ∂Ω (2.15)

pointwise, then u is a solution of the Poisson equation with Dirichlet boundary condi-
tions.

To numerically solve the Poisson equation with homogeneous Dirichlet boundary con-
ditions, it is necessary to discretise the Poisson equation. This involves the discretisation
of the Laplacian. Now, Ω is considered to be an equidistant two-dimensional grid X on
[−1, 1]2 with a grid spacing of h = 2

d−1 , resulting in d2 grid points. Further details
on cell-centred grids are covered in section 2.3.1. Then, u and f from definition 2.11
evaluate on the X as

uij := u(−1 + ih,−1 + jh) for i, j with (ih, jh) ∈ Ω (inner points),
fij := f(−1 + ih,−1 + jh) for i, j with (ih, jh) ∈ Ω (inner points), (2.16)

and satisfying the homogeneous Dirichlet boundary conditions. By applying finite dif-
ferences twice, the Laplacian can be approximated by

∆u(ih, jh) ≈ 1
h2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij) (2.17)

for the inner points i, j = 1, . . . , d and with ukl = 0 for (kh, lh) ∈ ∂Ω, with second-order
errors [52, Chapter 1].

12
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Continuing with (2.17), a linear system of equations Ahuh = bh can be established by
storing the values uij in the vector u using column-major order, thus uh ∈ Rd2 . The
vector bh ∈ Rd2 stores the values −fij , and additional values for the boundary points.
The d2 × d2 matrix Ah represents the discrete Laplacian and is of the form

Ah = 1
h2


M Id

Id M
. . .

. . . . . . Id

Id M

 ∈ Rd2×d2 (2.18)

with

M =


−4 1
1 −4 . . .

. . . . . . 1
1 −4

 ∈ Rd×d (2.19)

and Id being the d× d identity matrix [36].
The discretised Poisson equation

Ahuh = bh (2.20)

can be solved using the eigenvalue decomposition of Ah. Given the eigenvalue decom-
position of Ah,

Ah = V ΛV −1, (2.21)

where Λ = diag(λ1, . . . , λd2) is a d2 ×d2 diagonal matrix containing the eigenvalues of Ah

and V = (v1| . . . |vd2) being the d2 ×d2 matrix with the corresponding eigenvectors of Ah,
the solution uh can be computed as follows:

Ahuh = bh

⇔ V ΛV −1uh = bh

⇔ uh = V −1Λ−1V bh. (2.22)

It can be shown that V in the case of homogeneous Dirichlet boundary conditions is
a symmetric matrix, implying V ⊤ = V , and orthogonal up to a scaling factor. The
matrix Λ is a diagonal matrix, therefore, Λ−1 can be obtained by taking the reciprocal
of its diagonal elements [58].

To apply this result to Ah, the eigenvalues and eigenvectors of Ah need to be deter-
mined. Due to its block structure, we can represent Ah using the Kronecker product.
By exploiting the properties of Kronecker product, the eigenvalue computation can be
simplified. To achieve a Kronecker representation of Ah, we use the discretisation of the
one-dimensional second derivative

D = 1
h2


−2 1
1 −2 . . .

. . . . . . 1
1 −2

 ∈ Rd×d. (2.23)
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The second derivative in two dimensions can be computed by applying the operator D to
each column to obtain the second derivative in ξ1-direction, and using the same princi-
ple again on the rows to get the second derivative in ξ2-direction using the Kronecker
product, leading to

∂11 ≈ Id ⊗D and ∂22 ≈ D ⊗ Id. (2.24)

As the two-dimensional discrete Laplacian is the sum of the second partial derivatives,
the discretisation of A can be established by

Id ⊗D +D ⊗ Id = Ah ∈ Rd2×d2
. (2.25)

Using this Kronecker identity of the Laplacian, we can compute the eigenvalues of Ah

using the characteristics of the Kronecker product and the eigenvalues of D. Fortu-
nately, D is a tridiagonal Toeplitz matrix, for which the following theorem holds:

Theorem 2.12 (Eigenvalues of a Toeplitz Matrix, cf. [57]). Let T ∈ Cd×d be a tridiag-
onal Toeplitz matrix, i.e.,

T =


b c

a b
. . .

. . . . . . c
a b

 ∈ Cd×d, (2.26)

for a, b, c ∈ C. Then, the eigenvalues of T are given by

ρj = b+ 2
√
ac cos

(
jπ

d+ 1

)
, j = 1, . . . , d, (2.27)

with corresponding (right) eigenvectors

wj =
((

c

a

)j/2
sin
(
jkπ

d+ 1

))
k=1,...,d

. (2.28)

Therefore, we can apply theorem 2.12 to compute the eigenvalues and eigenvectors
of D, with a = c = 1/h2 and b = −2/h2:

Corollary 2.13. The eigenvalues of D are given by

ρj = 1
h2

(
−2 + 2 cos

(
πj

d+ 1

))
, j = 1, . . . , d (2.29)

with the corresponding eigenvectors

wj =
(

sin
(
jkπ

d+ 1

))
k=1,...,d

, j = 1, . . . , d. (2.30)

The Laplacian can be extended to two dimensions using the Kronecker product. A use-
ful property of the Kronecker product is the following:

14
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Theorem 2.14 (Mixed-Product Property, c.f. [48]). Let M,N,O, and P be matrices
with suitable dimensions such that the products MO and NP exist. Then, the equation

(M ⊗N)(O ⊗ P ) = (MO) ⊗ (NP ) (2.31)

holds.

Now, we can compute the eigenvalues and eigenvectors of Ah:

Theorem 2.15. The eigenvalues of Ah are given by λij = ρi + ρj and the eigenvectors
are given by vij = wi ⊗wj for i = 1, . . . , d and j = 1, . . . , d, where ρi are the eigenvalues
and wi the eigenvectors of D.

Proof. As the products Idw
j , Dwi, Dwj and Idw

i exist, theorem 2.14 can be applied
twice, leaving

Ahv
ij = (Id ⊗D +D ⊗ Id)(wi ⊗ wj)

= Idw
j ⊗Dwi +Dwj ⊗ Idw

i. (2.32)

As wi and wj are eigenvectors of D with corresponding eigenvalues ρi and ρj and with
linearity of the Kronecker product,

Ahv
ij = wj ⊗ ρiw

i + ρjq
j ⊗ wi

= (ρi + ρj)(wi ⊗ wj)
= (ρi + ρj)vij

= λijv
ij , (2.33)

holds, completing the proof for this theorem.

As an immediate consequence of theorem 2.15, the following corollary holds:

Corollary 2.16. The eigenvalues of the Ah are given by

λij = ρi + ρj

= 1
h2

(
−2 + 2 cos

(
iπ

d+ 1

)
− 2 + 2 cos

(
jπ

d+ 1

))
= − 4

h2

(
sin2

(
iπ

2(d+ 1)

)
+ sin2

(
jπ

2(d+ 1)

))
, (2.34)

with the corresponding eigenvectors

vij = wi ⊗ wj

=
((

sin
(
kπi

d+ 1

)
sin
(
lπj

d+ 1

)))
k,l=1,...,d

, (2.35)

for i, j = 1, . . . , d.

With its eigenvalues and eigenvectors, we can diagonalise Ah, and the discretised
Poisson equation can be solved using (2.22). Although this approach has lowered the
computational costs of solving the Poisson equation, a naïve multiplication with V still
requires O(m2) multiplication and multiplications, with Λ−1 are in O(m) with m := d2.

The solution of the Poisson equation can be obtained computationally more efficiently
in Fourier space. For this, the Sylvester equation is needed:
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Theorem 2.17 (Sylvester equation, [39]). Let M ∈ Rn×n, N ∈ Rl×l and O,P ∈ Rn×l,
let In denote the n× n identity matrix. Let vec(P ) denote the column-major vectorised
form of the matrix P . Then

(Im ⊗M +N⊤ ⊗ In)vec(O) = vec(P ) ⇔ MO +ON = P. (2.36)

Now, we can apply theorem 2.17 to (2.25), therefore, the discrete Poisson equation
can be rewritten to [27]

DU + UD = F, (2.37)

with D as described in (2.23) and the matrix U containing the solution elements

U := (uij)i,j=1,...,d ∈ Rd×d (2.38)

and the matrix F containing the source term values

F := (−fij)i,j=1,...,d ∈ Rd×d. (2.39)

The matrix D can be diagonalised with the eigenvalue decomposition

D = SdΓSd, (2.40)

where the matrix Γ = diag(ρ1, . . . , ρd) contains the eigenvalues of D and the matrix
Sd = (wj)j=1,...,d contains the eigenvectors of D. The matrix Sd with a scaling factor is
the discrete sine transform (DST) of type I:

Definition 2.18 (Discrete Sine Transform (Type I), c.f. [12]). The d × d discrete sine
transform matrix Sd is given by

Sd =
(

sin
(
πij

d+ 1

))
i,j=1,...,d

∈ Rd×d. (2.41)

The DST of y ∈ Rd is computed by

1√
2h

DST(y) = Sdy. (2.42)

As the DST matrix Sd is diagonal up to a scaling factor, the inverse discrete sine trans-
form (IDST) can be computed by

IDST(y) = 1√
2h

DST(y). (2.43)

The DST is denoted with DST(y) = ŷ. The two-dimensional DST of a matrix M ∈ Rd×d

is the application if the DST on the rows of M and on the columns of M .

For enhanced readability, the discrete sine transform is displayed as S := Sd. Now, we
define a matrix X ∈ Rd×d such that

U = SXS (2.44)
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holds. This diagonalisation can be plugged into (2.37), leading to
DU + UD = h2F

⇔ DSXS + SXSD = h2F. (2.45)
Multiplying (2.45) with S from the left and from the right leads to

SDSXS2 + S2XSDS = h2SFS, (2.46)
such that the diagonalisation DS = SΓ and SD = ΓS can be plugged into (2.46), leading
to

S2ΓXS2 + S2XΓS2 = h2SFS. (2.47)
As S is orthogonal, (2.47) simplifies to

ΓX +XΓ = h4SFS. (2.48)
This leads to the component wise equation

ρixij + xijρj = h4f̂ij (2.49)
for i, j = 1, . . . , d. By isolating the terms xij , we can obtain the components of X by

xij = h4 f̂ij

ρi + ρj
= h4 f̂ij

λij
, (2.50)

with the eigenvalues λij of Ah as described in corollary 2.16.
As sin2

(
iπ

2(d+1)

)
> 0 for i = 1, . . . , d, all eigenvalues λij < 0, therefore, the division

with λij is well-defined. Re-examining (2.44), the matrix X is actually the DST trans-
formed matrix U . Therefore, the solution of the Poisson equation U can be obtained
by applying the IDST on (2.50). The DST can be computed using the discrete Fourier
transform (DFT) as follows:

Theorem 2.19 (DST via DFT, c.f. [62, Chapter 12]). Let y ∈ Rd, let x = DST(y).
Then, for the elements xk, k = 1, . . . , d,

xk = −
√

2d− 2
2i DFT((0, y1, . . . , yd, 0,−yd, . . . , y1))k (2.51)

holds.

The computational costs can be lowered further by computing the DFT with the fast
Fourier transform (FFT). Therefore, the solution of the discrete Poisson equation can
be efficiently computed with O(m logm) multiplications [12].

2.3 Image Registration
Image registration is the task of aligning two images such that their distance is min-
imised by aligning the images to the same coordinate system. Image registration is a
crucial task in several fields, including astronomy, biology, physics, and medical image
processing [54]. In a medical setting, image registration is utilised for treatment plan-
ning, disease follow-ups, such as the comparison of pre- and post-intervention images,
and treatment verification during surgery [32, 50, 54]. In this thesis, we perform cardiac
image registration. Therefore, the mathematical and numerical foundations for image
registration are laid in the following sections.
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2.3.1 Images and Image Discretisation

Images
Mathematically, an image I is understood as a continuous mapping

I : Ω → Rk, Ω ⊆ Rd, (2.52)

from the image domain Ω to its intensity values, the real numbers Rk [35, 54]. Typical
values are k = 1 and k = 3, where k = 1 indicates grey valued images and k = 3 indicates
RGB images. As all images used in this thesis are grey valued images, we set k to 1 for
the remainder of this thesis. The value d indicates the spatial dimension of the given
data. In this thesis, all images are two-dimensional MRI scans, therefore, we set d = 2
for the remainder of this thesis. The boundary of the image domain is referred to as ∂Ω.

The modality of an image refers to the image generation method. Common modalities
are ultrasound, computed tomography, and MRI. If two images are acquired by the same
method, they are of the same modality, referred to as mono-modal imaging; the converse
is denoted as multi-modal.

Discretisation of Images
For numerical computations, discrete images are needed. Since we use medical MR
images in this thesis, all images sample an object with a finite number of pixels [35].
As the given images are discrete, the discretised image registration problem are solved
numerically with a discretise-then-optimise approach. Ideally, the main features of the
image are found in its discretisation, therefore, the discretised problem can be solved
with standard optimisation methods, but with lower computational costs compared to
the optimise-then-discretise approaches [31, 54].

To discretise an image, we first discretise the image domain Ω. The domain Ω is now
considered an n-dimensional interval Ω = (a1, b1) × · · · × (an, bn) ⊂ Rn, where n denotes
the spatial dimension of Ω. A grid is a partitioning of a given interval into a finite number
of non-overlapping cells [54]. There are different types of grids for the discretisation of
an interval, in this thesis, we use cell-centred grids. A cell-centred grid X stores the
images intensity values I(ξ) in the centres ξ = (ξ1, . . . , ξn) ∈ X of each cell.

The grid spacing hj , j = 1, . . . , n, depends on the images size, which is determined by
the number of data points d in each dimension. The grid spacing is computed by

hj = bj − aj

d
for j = 1, . . . , n. (2.53)

A discrete image is now considered the mapping

I : X → Rk, (2.54)

allocating to each cell-centre the intensity value at the corresponding image point.
From now on and for the remainder of this thesis, all images are considered to be

discrete two-dimensional grey-valued images that are discretised on equidistant cell-
centred grids. As the images are numerically represented by matrices, we choose the
coordinate system to match the matrix indexing. An example of a two-dimensional
discretised domain is displayed in figure 2.3.
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Figure 2.3: An exemplary two-dimensional equidistant cell-centred grid for Ω = (a1, b1)×
(a2, b2) = (0, 3) × (0, 4) with a grid spacing of h1 = h2 = 1 (adapted from [54]).

Interpolation
As the images we use for this thesis are discrete, the image intensity values are only given
for the cell-centres. In order to evaluate the image at points between the cell centres,
the intensity values have to be interpolated. The following computations are adapted
from [54, Chapter 3].

Let ξ̃ = (ξ̃1, ξ̃2) be a point between the grid points of the cell-centred grid X , let I :
X → R a discrete two-dimensional image. Bilinear interpolation uses the intensity values
of the four closest grid points of ξ̃, that we denote by (ξ1, ξ2), (ξ1 + h1, ξ2), (ξ1, ξ2 + h2),
and (ξ1 + h1, ξ2 + h2), and interpolates the intensity value of ξ̃ by performing linear
interpolation in both dimensions. The bilinear interpolation Ibilinear(ξ̃) is computed by

Ibilinear(ξ̃) = I(ξ1, ξ2)(1 − ζ1)(1 − ζ2)
+ I(ξ1 + h1, ξ2)ζ1(1 − ζ2)
+ I(ξ1, ξ2 + h2)(1 − ζ1)ζ2

+ I(ξ1 + h1, ξ2 + h2)ζ1ζ2 (2.55)

with

ζi = ξ̃i − ξi

hi
, i = 1, 2 (2.56)

denoting the normalised distance between ξ̃ and ξ. Missing values outside of X are set
to zero.

Discrete Derivatives and Integrals
Now, we introduce discrete computations of integration and derivatives that are needed
for this thesis. For a discretised domain Ω and pixel locations ξ ∈ Ω, the domain Ω is
assumed to be a cell-centred grid X with d2 grid points and a grid spacing of h = 2

d−1 .
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The discrete integral of a function µ : Ω → R can be estimated by∫
Ω
µ(ξ) dξ = hd

∑
ξ∈X

µ(ξ) + O(h2). (2.57)

The above formula results in integration errors of order h2 [54, Chapter 2].
In this thesis, discrete derivatives are approximated using central differences to esti-

mate (partial) derivatives of µ with

∂µ(ξi)
∂ξ

= µ(ξi+1) − µ(ξi−1)
2h + O(h2), (2.58)

leaving errors of order h2 [79, Chapter 1].
The described formula works for all inner points, missing values outside of Ω have to

be approximated. There are several ways to compute the derivatives at the borders. In
this thesis, we set missing values outside of Ω to zero.

2.3.2 The Image Registration Problem

Image registration is the task of aligning two images of the same object captured at dif-
ferent times, perspectives or from different devices [53]. The aim is to find a deformation
field ϕ warping the moving image IM to be as similar as possible to the fixed image IF .

The mathematical problem is described as follows: For a given pair of discrete grey
value images

IF , IM : X → R, (2.59)

find a deformation field ϕ : Ω → Ω by solving the optimisation problem

min
ϕ:Ω→Ω

L(IF , IM ◦ ϕ) (2.60)

with L measuring the image dissimilarity of the transformed moving image and the fixed
image.

In this thesis, we consider the deformation field to be divided into two parts, the
identity and the displacement field u : Ω → R2 such that

ϕ(ξ) = ξ + u(ξ) (2.61)

for all ξ ∈ Ω [53]. Thus, the final deformation is the sum of the identity and a dis-
placement field u, that indicates for every pixel ξ to which position it is displaced. This
approach is called an Eulerian approach. Applying this deformation to the moving image
leads to the transformed image (IM ◦ ϕ)(ξ) = IM (ξ + u(ξ)).

There are several approaches to perform image registration and the choice of approach
depends on the data and the specific setting. In the following two sections, the main ap-
proaches are briefly introduced and compared. The registration approaches are roughly
divided into two categories, however, there are overlaps between these categories.

20



2 Preliminaries

2.3.3 Landmark-Based and Intensity-Based Registration

Landmark-based image registration uses pairs of distinct corresponding points, known as
landmarks, from the moving and the fixed image. During the optimisation process, the
total distance between all pairs of corresponding landmarks is minimised. An advantage
of landmark-based image registration is the usually rather small number of features to
optimise on, leading to a constrained solution space, and therefore lower computation
costs [50]. Furthermore, registration of different image modalities is possible if the
corresponding landmarks are found in both modalities [51].

However, data sets often do not include anatomical landmarks, and extracting land-
marks is a slow and expensive task, as an expert labelling each image individually is
needed. For certain organs, such as the heart, finding distinct landmarks is generally
more challenging as the image resolution is usually lower compared to other organs [51].
Especially the short-axis region shows more variety in its anatomy leading to less accu-
rate automatically placed landmarks. Although larger sets of landmarks would allow for
more complex transformations [50], most data sets do not include the necessary number
of anatomical landmarks. Moreover, for a small number of landmarks, much of the image
information remains unused in the registration process.

Instead of relying on anatomical landmarks only, additional information such as seg-
mentation maps can help to address the issue of a small number of landmarks. However,
placing segmentations manually can take an expert up to 20 minutes per ventricle [61].
This issue can be resolved by using automatically placed anatomical landmarks [88] and
segmentations [80]. Another issue of segmentation-based methods is that the segmenta-
tion accuracy must be high in order to achieve a good registration result [26, 50].

Instead of using anatomical structures for the registration, intensity-based image regis-
tration can be performed. Intensity-based registration operates on the image’s intensity
values and computes a deformation field based on a dissimilarity metric [26]. A dissimi-
larity metric compares the intensity values of two images and indicates, how similar the
images are. A higher value indicates less similarity, in the case of identical images, the
dissimilarity should be zero.

A common dissimilarity metric is the mean squared error (MSE), computing the mean
quadratic error of the difference of intensity values of two images at the same position
ξ ∈ X . The MSE for discrete images is computed by

LMSE(IF , IM ◦ ϕ) = 1
|Ω|

∑
ξ∈Ω

(
IF (ξ) − (IM ◦ ϕ)(ξ)

)2
. (2.62)

The MSE is computationally inexpensive, but it assumes a direct comparability of in-
tensity values of pixels at the same position [54, Chapter 7]. Therefore, the images need
to be of the same modality, ideally from the same scanner, to have matching intensity
values. Other common dissimilarity metrics are the normalised cross-correlation or the
mutual information, more details can be found in [54, chapter 7].

As intensity-based approaches are not in need of anatomical landmarks, they can
be performed on any data set. Although intensity-based image registration has usu-
ally higher computational costs in comparison to landmark-based registration, as the
optimisation is performed on the full image, it is often beneficial for the registration.
Intensity-based image registration uses the underlying image information, leading to a
generally more flexible and robust registration [26].
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2.3.4 Parametric and Non-Parametric Image Registration

Another approach to lowering the computational costs of image registration is the pa-
rameterisation of the deformation field. Parametric image registration selects a deforma-
tion from a low-dimensional space by parameterising the deformation field with a finite
number of parameters. In contrast, non-parametric registration, such as elastic or fluid
registration, is not restricted to a finite-dimensional space and allows for more complex
deformations [51].

An advantage of parametric image registration is the lower number of possible de-
formations, which lowers the computational costs for solving the associated optimisa-
tion problem. However, not all motions can be described by parametric deformations,
thus, non-parametric registration can yield better registration results, especially for more
complex deformations [10]. Nonetheless, parametric registration can be effective if prior
knowledge about the data is available. This knowledge can be used to choose a suitable
parameterisation of the deformation field, leading to reasonable registration results but
lower computational costs.

Parametric deformations can be divided into two categories: rigid transformations
and deformable deformations. Rigid image registration can be described as matching
the same anatomical structure from both images [26]. These transformations are linear
and include translations and rotations, preserving lengths, angles, and volumes of the
transformed image’s structures. These transformations apply the same movement to all
points of an image uniformely. However, rigid transformations are often not suitable
for medical registration, especially if non-rigid structures such as moving organs like the
heart are involved, where changes often occur in small areas whereas other areas stay
undeformed.

In contrast, deformable image registration allows for non-linear, locally differing defor-
mations. While deformable deformations lead to higher computational costs than rigid
transformations, they allow for more realistic deformations for non-rigid structures [26].
Nevertheless, rigid deformations are often used for pre-processing of the data to allow
for better results in deformable image registration.

2.3.5 Regularisation

One of the main concerns of optimisation problems is to ensure that the given formulation
of the problem is not ill-posed. The following formulation is the formal definition of a
well-posed problem as stated by Hadamard:

Definition 2.20 (Well-Posedness [34]). A problem is called well-posed if the following
three quantities hold:

1. the problem has a solution,

2. the solution is unique,

3. the solution depends continuously on the data.

If a problem is not well-posed, it is called ill-posed.

The image registration problem as stated in (2.60) is an ill-posed problem, as small
changes in the input data can conduct larger changes in the solution and the solution
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may not be unique [53]. This issue can be addressed by adding regularisation. The
regularised problem can be stated as

min
ϕ:Ω→Ω

L(IF , IM ◦ ϕ) + S(ϕ), (2.63)

where S(ϕ) is the regulariser that depends on the solution ϕ. Regularisation can for ex-
ample penalise certain properties of the solution, such as physically implausible solutions
like tissue folding.

The choice of regularisation is highly dependent on data characteristics. Thus, for
an unknown dataset, there might not be enough information to reasonably regularise
the registration, affecting well-posedness and potentially introducing unwanted bias [6].
Even with a suitable regularisation, the problem usually does not have a unique solution,
causing the result to depend on the optimisation algorithm and starting point [54].

2.3.6 Diffeomorphisms

Imposing certain properties on the deformation field is particularly beneficial in medical
image registration. It is often required that the resulting deformation field ϕ is invertible,
with both ϕ and ϕ−1 satisfying smoothness conditions to preserve the topology of the
registered organs [6]. Additionally, certain deformations such as the folding of tissue of
anatomical structures, are implausible in a medical context. Ideally, these implausible
deformations should be excluded from the set of possible solutions. Consequently, an
important requirement for medical image registration is that the computed deformation
field is diffeomorphic, as diffeomorphisms prevent the aforementioned issues. A defor-
mation field is considered diffeomorphic if the following quantities hold:

Definition 2.21 (Diffeomorphisms [89, Definition 8.1]). A homeomorphism of Ω is a
continuous bijection ϕ : Ω → Ω such that its inverse ϕ−1 is continuous.

A diffeomorphism of Ω is a continuously differentiable homeomorphism ϕ : Ω → Ω
such that ϕ−1 is continuously differentiable.

In certain scenarios, both the deformation of the moving image to the fixed and the
deformation of the fixed to the moving image are of interest. If the deformation field
ϕ is diffeomorphic, its inverse ϕ−1 exists by definition. We denote the resulting two
deformation fields, referred to as the forward and the backward deformation, in this
thesis as ϕf := ϕ and ϕb := ϕ−1.

Jacobian Determinant
An efficient way to determine if a deformation field ϕ is diffeomorphic, is to analyse its
Jacobian determinant

Jϕ(ξ) := det ∇ϕ(ξ), (2.64)

with the Jacobian matrix defined as

∇ϕ(ξ) =


∂ϕ1
∂ξ1

(ξ) . . . ∂ϕ1
∂ξn

(ξ)
... . . . ...

∂ϕn

∂ξ1
(ξ) . . . ∂ϕn

∂ξn
(ξ)

 ∈ Rn×n. (2.65)
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If the deformation field ϕ is diffeomorphic, the Jacobian determinants are either all
positive or negative for all ξ ∈ Ω. This is a consequence of the implicit function theorem.

In the case of only negative determinants, the entire image is reflected, which is in a
medical image setting an implausible result [49]. Therefore, enforcing a positive Jacobian
determinant for ϕ results in a plausible diffeomorphic deformation field ϕ.

The Jacobian determinant of a deformation field ϕ can serve as an indicator for local
volume contraction or extension. A Jacobian determinant less than 1 indicates local
contraction, while a Jacobian determinant greater than 1 indicates local extension. For
a Jacobian determinant of 1, the volume remains constant. Consequently, if Jϕ(ξ) = 1
for all ξ ∈ Ω, the deformation is volume-preserving. As most organs are incompressible,
ensuring a volume preserving registration by controlling the Jacobian determinant of the
deformation field is a reasonable constraint for medical image registration.

2.3.7 Large Deformation Diffeomorphic Metric Mapping

As discussed in section 2.3.6, obtaining a diffeomorphic deformation field can be bene-
ficial in medical image registration. However, for registrations requiring large deforma-
tions, such as the registration of the end-systolic and end-diastolic phase of the heart,
ensuring a diffeomorphic deformation field can be challenging.

One approach to address this problem is the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) method. It was proposed by Beg et al. in 2005 [6]; the problem
was first studied by Dupuis et al. and Trouvé et al. [23, 83]. The core concept of
this approach is to decompose the final deformation field ϕ into a sequence of small
diffeomorphic deformations, which together form a diffeomorphism.

A deformation field ϕ can be described as the endpoint of a flow ϕt(ξ) := ϕ(ξ, t)
with ϕt : Ω × [0, 1] → Rn. The flow is described by a time-dependent velocity field
Vt(ξ) := V(ξ, t), where Vt : Ω × [0, 1] → Rn. It is modelled by the ODE:

dϕt(ξ)
dt = Vt(ϕt(ξ)) for t ∈ [0, 1]. (2.66)

The final deformation field ϕ := ϕ1 is obtained by solving this ODE with the initial
condition ϕ0(ξ) = ξ for t = 1, as t = 1 represents the endpoint of the flow [90].

2.4 Machine Learning in Image Registration
With the increasing resolution of MRI scans, the amount of data requiring processing
for deformable image registration is also rising. Consequently, efficient algorithms for
registration tasks are essential. Machine learning can be utilised to address problems
that are difficult to solve with traditional modelling-driven algorithms.

As this thesis focuses on medical image registration using U-Nets and implicit neural
representation, this section provides an overview of machine learning basics and U-Nets.
The section is divided into three parts. First, we introduce artificial neural networks.
Afterwards, U-Nets are examined, followed by a brief introduction of implicit neural
representation. Finally, the application of machine learning in image registration is
discussed.
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Figure 2.4: A schematic example of a an ANN, consisting of an input layer, two hidden
layers, and an output layer (adapted from [59]).

2.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) lay the foundations of machine learning. They are
inspired by the human brain, more specific by its neurons. An artificial neuron is a
non-linear, parametric function that builds the smallest unit of an ANN. Analogously
to the neurons of the brain, an artificial neuron activates if its input exceeds a certain
bias.

Mathematically, the output y ∈ R of an artificial neuron is expressed as the linear com-
bination of the input x = (x1, . . . , xn) ∈ Rn according to weights w = (w1, . . . , wn) ∈ Rn,

y = σ(x⊤w) = σ

(
n∑

i=1
wixi

)
∈ R, (2.67)

where the usually non-linear activation function σ : R → R determines if the neuron
activates [71]. A bias can be added using an additional input element and a corresponding
weight with a fixed value of 1. An ANN is the connection of several artificial neurons;
the architecture of an ANN is displayed in figure 2.4.

Activation Functions
The activation functions of ANNs are usually chosen to be non-linear such that more
complex relations of the input data can be found. The choice of the activation function
depends on the task that the ANN is used for. Now, we briefly introduce three standard
activation functions based on [74].

The Sigmoid function,

Sigmoid(y) = 1
1 + e−y

(2.68)
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(a) The Sigmoid activation
function.
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(b) The ReLU activation func-
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(c) The leakyReLU activation
function with α = 0.2.

Figure 2.5: The three introduced activation functions. The Sigmoid function bounded by
(0,1), whereas the leakyReLu function is not bounded. The ReLU function is bounded
below by zero. The smoothness of the Sigmoid function in comparison to the non-
smoothness of the ReLU and leakyReLu function is observable.

is an example of the class of logistic functions and is a commonly used activation func-
tion. It maps the input y to the interval (0, 1). The Sigmoid function is continuously
differentiable.

Another typical activation function is the Rectified Linear Unit (ReLU),

ReLU(y) = max{0, y}. (2.69)

The ReLU function is computationally less expensive in comparison to the Sigmoid
function and more efficient, as not all neurons are activated at the same time. This can
also be a disadvantage, as all negative values are mapped to the same value. The ReLU
function is also not continuously differentiable.

An adaptation of the ReLU function is the leakyReLU function, that maps negative
values to small values:

leakyReLU(y) =
{

y, y ≥ 0,
αy, otherwise, (2.70)

with a usually small parameter α. Using a linear component for negative values prevents
zero gradients that interfere with the learning process. The three introduced activation
functions are displayed in figure 2.5.

Stochastic Gradient Descent
The learning process of an ANN is realised by updating its weights w during the training
process to minimise the loss function L. For each epoch of a training cycle, the output
of the ANN is used to evaluate the loss function L value, using the current weights.

The weights w are updated using the backpropagation algorithm, which minimises the
loss function by computing gradients with respect to the weights [71]. Computing those
gradients can be a challenging task. For this thesis, we use automatic differentiation in
backward mode with PyTorch to compute gradients. [60].

In comparison to regular gradient descent, stochastic gradient descent (SGD) does not
compute the gradients for the entire data set, but for a small subset of training data to
reduce computational costs. The update rule for SGD is given by

wnew = wold − ηk∇L(wold, xik
), (2.71)
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where ηk denotes the positive step size, and index ik is chosen randomly for each iteration
k ∈ N [8].

The adaptive moment estimation (Adam) optimisation is a modified version of the
SGD [41]. The algorithm contains three main features. The Adam algorithm computes
the learning rates η for each iteration and each parameter individually. Additionally,
Adam optimisation includes momentum by keeping an exponentially decaying average of
gradients from previous iterations, leading to smoother updates and faster convergence
compared to standard SGD. The optimisation in this thesis is carried out using Adam
optimisation.

2.4.2 U-Nets

In 2015, Ronneberger et al. introduced the U-Net, a convolutional neural network for
efficient image segmentation in medical image processing [69]. The U-Net architecture
shares similarities with Convolutional Neural Networks (CNNs), which were first pro-
posed by LeCun in 1989, and are commonly used for image processing tasks such as
classification tasks [44]. Further details on CNNs can be found in [59]. Although CNNs
have demonstrated good results for classification tasks, the precise localisation of the
detected objects are often needed [69].

The U-Net architecture consists of three main components: the encoder (or contracting
path), the decoder (or expansive path), and the bottleneck, which connects the encoder
with the decoder. The name U-Net derives from this U-shaped architecture, which is
displayed in figure 2.6.

The contracting path is similar to the architecture of a CNN and downsizes the spa-
tial dimension of the input image by a repetition of the following steps. First, two
convolutions are performed on the input image pair. The discrete convolution of the
two-dimensional image I of size n1 × n2 and the kernel K of size k1 × k2 is mathemati-
cally expressed as

(I ∗K)(i, j) =
k1−1∑
l=0

k2−1∑
m=0

I(l,m)K(i− l, j −m), (2.72)

where (I ∗K)(i, j) represents the output of the convolution at the position (i, j) [30]. For
multi-channel inputs, the convolution is preformed on all channels individually, with a
distinct kernel for each channel. The weights of the U-Net are the elements of the filter
kernels that are shared in an entire layer, leading to a lower number of weights compared
to traditional ANNs. The filter kernels are usually smaller than the input image, with
their elements learned during training. Each convolutional layer is followed by a ReLU
unit.

After this, the image is down-sampled using a pooling layer. Pooling layer reduce the
images resolution by summarising entries with similar location. A common technique for
this the max pooling, which selects the maximum value within a small neighbourhood
of the input image. Pooling aids to achieve translation invariance and reduces the
computational complexity by lowering the spatial dimension of the input [59]. Each step
reduces the images spatial dimension. The combination of convolutional and pooling
layer allows the U-Net to effectively detect patterns and features within the input data.

27



2 Preliminaries

Figure 2.6: The schematic architecture of a U-Net (adapted from [69]). The image sizes
at each step correspond to the sizes of the blue boxes. The black arrows represent the
skip connection between the contracting and the expansive path. The dark blue boxes
represent the concatenation of the information of the contracting path to the expanding
path.

To connect the contracting path and the expansive path, the final layer of the contracting
path performs a 1 × 1 convolution instead of max pooling.

The expansive path increases the spatial dimension of the input image by perform-
ing up-convolution (transposed convolution), followed by two convolutions and another
ReLU unit. The up-convolution halves the number of feature channels, but increases the
spatial resolution of the input. A significant feature of U-Nets are the skip connections.
Skip connection concatenate layers of the encoder layers to the corresponding layer of
the decoder, preserving the spatial information of learned features by connecting them
to the upsampled features. This allows U-Nets not only to detect features, but also
to localise the found objects by combining the high-resolution features detected in the
contracting path with the upsampled image of the expansive path.

2.4.3 Implicit Neural Representation

Discrete representations of signals, such as discretised images, can only store details
limited by the grid resolution they are discretised on. In contrast, an ideal continu-
ous representation of a signal can have achieve an arbitrary resolution. The concept of
implicit neural representation (INR) addresses this issue by finding a continuous rep-
resentation of discrete input data, using ANNs to estimate a continuous function that
represents an image or other signal implicitly [87]. The ANN is parameterised and can
therefore be stored with a finite number of parameters. This allows for an arbitrarily
fine resolution that can be stored with a lower number of parameters, especially for
increasing input size [87].
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INR utilises ANNs to parameterise continuous functions that map spatial input coor-
dinates ξ to their corresponding data values. This is achieved by training an ANN that
parameterises Ψ : ξ 7→ Ψ(ξ), where Ψ represents the object of interest, such as an image,
and maps ξ to the images intensity values [78].

Compared to discrete representations, the continuous representation of a signal with
INR is not limited by the grid resolution, but by the ANN architecture. Additionally,
interpolation can be avoided, as the representation is continuous. As INR are designed
to be differentiable, gradients and higher-order derivatives can be computed analytically
and therefore leading to higher accuracy, which allows for optimisation of complex signals
of typically ill-posed problems [87].

SIREN
A prominent INR approach is the Sinusoidal Representation Network (SIREN), which is
used for representing three-dimensional shape representations [78]. The functions Ψ are
parameterised as fully-connected networks, the parameters are optimised with gradient
descent. Unlike the standard INR that uses ReLU activation function, SIREN uses
periodic activation functions, more specific sine functions. The second order derivative
of the ReLU activation function is zero, which limits the ability to capture fine details in
the represented structures, as ReLU is less effective to model complex patterns with high
frequency variation. SIREN uses sine activation functions, which can be differentiated
continuously the desired number of times. This capability enables SIREN to model more
complex structures. The SIREN parameterisation of Ψ is given by

Ψ(ξ) = W n(ψn−1 ◦ ψn−2 ◦ · · · ◦ ψ0)(ξ) + bn, (2.73)

with

ψi(ξi) = sin(W iξi + bi), (2.74)

where ψi : RMi 7→ RNi is the i-th layer of the ANN. Within each layer, an affine
transform on ξ with the weight matrix W i ∈ RNi×Mi and bias bi ∈ RNi is then followed
by a non-linear transforms in form of a sine transform.

2.4.4 Image Registration and Machine Learning

U-Nets in Image Registration
Although machine learning algorithms demonstrated promising results in various fields,
many state-of-the-art image registration methods still rely on iterative optimisation be-
tween the images [75]. While iterative algorithms achieve high accuracy for the regis-
tration, they are usually computationally expensive. Furthermore, they do not use the
advantages that machine learning algorithms provide, in particular, iterative algorithms
do not learn features or patterns from the given data. Therefore, to receive accurate reg-
istration results, a user needs to identify such patterns and add matching regularisation
terms for each new data set [75].

Applying machine learning to image registration can enable the learning of patterns,
features, and generalisations from the images which could benefit the registration [75].
Recent approaches that apply machine learning to image registration have shown com-
parable accuracy to iterative algorithms but with lower computational costs [40].
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To use U-Nets for image registration, the U-Net learns on several pairs of images that
are registered. The output of the U-Net usually includes the deformation field. Although
the resulting deformation fields might show good results, certain properties, such as a
diffeomorphic deformation field, are often missing.

Machine learning approaches can roughly be divided into two groups: supervised and
unsupervised learning. Supervised learning algorithms have shown promising results, but
a ground truth is needed and the overall performance is highly dependent on the ground
truth accuracy. Additionally, the ground truth to medical data is often not available,
making supervised learning algorithms not applicable for medical settings [76].

Unsupervised methods avoid the need for ground truth: image registration algorithms
for deformable registration using machine learning aim to solve the minimisation problem

argmin
θ∈Rn

L(IF , IM , gθ(IF , IM )), (2.75)

where gθ is a function modelled by the U-Net and θ are the learnable parameters of g.
The loss function L is a measure for the dissimilarity of the registered images, c.f.
section 2.3.3. The deformation field ϕ is the computed by evaluating the function, i.e.,

ϕ = gθ(IF , IM ). (2.76)

The optimisation problem resulting from this formulation is ill-posed as the solution
may not be unique. Without further constraints, the resulting deformation field is not
necessarily diffeomorphic [31]. Similar to iterative registration, this issue can be ad-
dressed by adding regularisation terms, but the same issues of finding such terms occur.
Regularisation is often difficult to choose and needs prior knowledge on the data that is
often not available.

A different approach to achieving well-posedness is to reduce the dimension of the
solution space. By parameterising the deformation field, it can described with a finite
number of parameters.

INR in Image Registration
To perform image registration using INR, the INR can be utilised to generate the de-
formation field ϕ for a given pair of images. One of the main differences compared to
registration with a U-Net is that a new parameterisation Ψ is learned for each new image
pair, whereas U-Nets are trained to produce a new deformation field for a new pair of
input images. The input for an INR is a set of image coordinates, and the training cycle
involves updating the weights based on the loss from one image pair. Therefore, the
training is performed directly on the test data and does not include a training and vali-
dation cycle with a different data set as in the U-Net training process. INR approaches
have shown superior performance in comparison to state-of-the-art deep learning image
registration frameworks for deformable image registration [11].

An approach for deformable image registration using a U-Net with a guaranteed dif-
feomorphic deformation field is the moving mesh approach proposed by Sheikhjafari et
al. in 2022 [75]. For this thesis, we implement the moving mesh approach using a U-Net
as proposed by Sheikhjafari et al. Additionally, we augment the moving mesh approach
using an INR. In the following chapter, the moving mesh approach is introduced.
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3
The Moving Mesh Approach for Deformable
Image Registration
In this chapter, the moving mesh approach for deformable image registration proposed
by Sheikhjafari et al. in 2022 is introduced [75]. The moving mesh method was originally
developed for diffeomorphic grid generation in the context of partial differential equation.
The first section 3.1 examines the origin of the moving mesh approach for grid generation.

The second section 3.2 provides the proof that the moving mesh deformation results
in a diffeomorphic deformation field. The provided proof is by Liu [47]; we add further
details for enhanced understanding. As Abel’s lemma is needed as an auxiliary lemma
for the main proof, it is introduced in this section. The section also covers how the
div-curl-system, one of the main problems arising from the moving mesh approach, can
be transformed into a set of Poisson equations. This is a result by [75]; we provide the
computations. Then, a brief overview of the adaptations of the div-curl-system for the
three-dimensional case are provided.

In section 3.3, the application of the moving mesh approach for deformable image reg-
istration is described. Afterwards, the learning-based moving mesh approach proposed
by Sheikhjafari et al. is described.

Finally, we provide details on the implementation of the moving mesh approach in
section 3.4. The section covers the implementation details on solving the PDE and the
ODE, as well as the network architecture for the U-Net and the INR architecture.

3.1 Moving Mesh Grid Generation
Grid generation is a crucial part in the numerical solution of PDEs, as the accuracy and
the computational efficiency of the solution directly depend on the discretisation [47].
Therefore, the solution field needs to be discretised – in the simple case on a grid; more
generically on a mesh. Depending on the characteristics of the PDE, local refinement of
the grid at regions of interest can benefit the accuracy and computational costs. Adap-
tive grid generation enhances the solution accuracy by assigning a denser grid to regions
where large variation of the solution is expected and coarse grids to expected smooth re-
gions. In the moving mesh approach, the overall number of grid points remains constant,
as the grid points are progressively moved towards regions where higher accuracy is re-
quired. Moving the existing grid points avoids further computational costs that would
emerge by adding more grid points. This approach improves the solutions accuracy,
especially in regions of interest, and ensures computational efficiency of the numerical
computation of the solution.
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Liao et al. [45, 46] proposed the moving deformation method, an approach for moving
mesh generation. Their aim is to find a deformation field describing the relocation of
the mesh points, that is additionally diffeomorphic. A key feature of their approach is
the monitor function µ : Ω → R that is utilised to describe the movement of the grid
points by describing the Jacobian determinant of the mesh at each position. The studied
problem can be summarised as:

Problem 3.1 ([45]). Let Ω ⊂ Rn be a bounded open domain. Let µ ∈ C1(Ω̄), µ > 0,
and ∫

Ω
µ(ξ)dξ = |Ω|. (3.1)

Find a C1 diffeomorphism ϕ from Ω onto itself such that

det ∇ϕ(ξ) = µ(ξ) for ξ ∈ Ω,
ϕ(ξ) = ξ for ξ ∈ ∂Ω. (3.2)

Their approach to resolve this problem refers back to the results of Moser, who studied
volume elements on Riemannian manifolds without boundaries [56]. Banyanga extended
Moser’s results to manifolds with boundaries [5], and Dacorongna and Tartar indepen-
dently proposed an extension to bounded domains on Rn for n ≥ 2 [19]. They resolved
problem 3.1 by the following theorem:

Theorem 3.2 (c.f. [19]). Let k ≥ 0 be an integer and α > 0. Let Ω ⊂ Rn be a bounded
open set with C3+k,α boundary ∂Ω. Let µ ∈ Ck,α(Ω) and∫

Ω
µ(ξ)dξ = |Ω|. (3.3)

Then, there exists

ϕ ∈ Diffk+1,α(Ω), (3.4)

satisfying

det ∇ϕ(ξ) = µ(ξ) for ξ ∈ Ω, and ϕ(ξ) = ξ for ξ ∈ ∂Ω. (3.5)

Typical computational domains, such as cubes, do not fulfil the condition of a C3+k,α

boundary. Therefore, a large class of problems is not included in this result. This
problem is resolved by the following theorem proposed by Liao et al. It states that for
two-dimensional and three-dimensional unit volumes, a diffeomorphism with predefined
Jacobian determinant can be found:

Theorem 3.3 (c.f. [45]). Let Ω = (0, 1) × · · · × (0, 1) ⊂ Rn, n = 2, 3. Let µ ∈ C1(Ω)
with µ > 0 in Ω and µ = 1 on ∂Ω, with∫

Ω
µ(ξ)dξ = 1. (3.6)

Then, there exists ϕ ∈ Diff1(Ω) ∩ Diff0(Ω̄) satisfying

det ∇ϕ(ξ) = µ(ξ) for ξ ∈ Ω,
ϕ(ξ) = ξ for ξ ∈ ∂Ω. (3.7)
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This theorem 3.3 is only stated for unit domains, but Liao et al. showed the extension
to any connected bounded open domain in Rn with an argument involving partition of
unity. Therefore, this result can be generalised to rectangular domains.

Now, we explain the construction of a deformation field satisfying problem 3.1 as
proposed by Liao et al. First, they define a monitor function µ describing the mesh
redistribution. Then, a vector field V is defined, satisfying divV = µ−1; the construction
of such a vector field is addressed in section 3.2.1. Then, a velocity field

Vt(ξ) = V (ξ)
t+ (1 − t)µ(ξ) (3.8)

is constructed, using the vector field V and the monitor function µ for an artificial time
t ∈ [0, 1]. The deformation equation for ϕt : Ω̄ × [0, 1] → Rn can be formulated to
establish the final deformation field ϕ1, i.e.

d
dtϕt(ξ) = Vt(ϕt(ξ)) for t ∈ [0, 1], (3.9)

with the initial condition ϕ0(ξ) = ξ. This results in an ODE for every ξ ∈ Ω̄, with a unique
solution due to the boundary conditions V = 0 and ϕt(ξ) = ξ on ∂Ω [45]. The final
deformation field satisfying (3.7) is given by ϕ1. The monitor function µ controls the
Jacobian determinant of deformation field describing the movement of the grid point, as
the velocity field is scaled by the monitor function. The proof that det ∇ϕ1(ξ) = µ(ξ)
for all ξ ∈ Ω is provided in the next section 3.2. The resulting velocity field ϕt is diffeo-
morphic, as its Jacobian determinant is forced positive, thus, no grid folding occurs. All
steps of this approach are summarised in algorithm 1.

Before we cover how this result can be applied to deformable image registration to
obtain a guaranteed diffeomorphic deformation field, in section 3.3, we provide the proof
behind this concept in the following section.

3.2 Proof of Diffeomorphic Deformation Field Generation
via the Moving Mesh Approach

In this section, we present the proof provided by Liu in [47], to show that the mov-
ing mesh approach is used to establish a deformation field ϕ that is guaranteed to be
diffeomorphic. This is achieved by restricting its Jacobian determinant Jϕ on the old
grid to be positive. The Jacobian determinant of the deformation field is prescribed
by the monitor function µ as the deformation field ϕ is parameterised by the monitor
function µ and a curl of end velocity field γ. The proof also highlights why the vector
field V needs to satisfy divV = µ− 1. For enhanced clarity and understanding, we add
further details to the proof.

To get an overview of the steps of the proof, the main steps are roughly summarised:

• First, Abel’s lemma that acts as an auxiliary lemma is introduced.

• The main result is to prove that µ(ξ) = det ∇ϕ1(ξ) holds.

• We show this by constructing a mapping H such that H(ξ, 0) = µ(ξ) and H(ξ, 1) =
det ∇ϕ1(ξ).
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Algorithm 1: Moving Mesh Grid Generation [47]
Step 1: Define a continuous monitor function µ : Ω → R that is constrained by∫

Ω
µ(ξ)dξ = |Ω|. (3.10)

Step 2: Find a vector field V satisfying

divV = µ− 1. (3.11)

Step 3: Construct a velocity field with an artificial time t ∈ [0, 1]:

Vt(ξ) = V (ξ)
t+ (1 − t)µ(ξ) . (3.12)

Step 4: Solve the ODE:

d
dtϕt(ξ) = Vt(ϕt(ξ)). (3.13)

Step 5: Evaluate ϕt(ξ) for t = 1 to obtain the final deformation field ϕ1.

• Then, ∂
∂tH(ξ, t) is computed with the help of Abel’s lemma.

• Finally, we show that ∂
∂tH(ξ, t) = 0 for t ∈ [0, 1] and for all ξ ∈ Ω, which results in

the main result µ(ξ) = det ∇ϕ1(ξ).

First, we introduce Abel’s Lemma:

Lemma 3.4 (Abel’s Lemma). Let M(t) be a d×d matrix such that each element of the
matrix is differentiable on t, let d

dtM(t) be the matrix with the differentiated elements
of M(t). If d

dtM(t) = A(t)M(t), where A(t) is a d× d matrix, then

d
dt(detM(t)) = (traceA(t))(detM(t)). (3.14)

The proof of Abel’s Lemma can be found in the appendix in section A.1.
Now to the main proof. Consider the following problem: for a given monitor function µ,

find a diffeomorphic mapping ϕ such that

Jϕ1(ξ) := det ∇ϕ1(ξ) = µ(ξ). (3.15)

First, we revise the assumptions. We define a monitor function µ : Ω → R, with the
additional condition µ(ξ) > 0 for all ξ ∈ Ω, satisfying step 1 of algorithm 1. Then, we
assume a vector field V : Ω → Rd exists such that divV = µ − 1, satisfying step 2 of
algorithm 1. To show that (3.15) holds for the final deformation field ϕ1, we use the
vector field V as in step 3 to define a velocity field Vt : Ω×[0, 1] → Rd with Vt(ξ) := V(ξ, t)
for an artificial time t ∈ [0, 1] such that

Vt(ξ) = V (ξ)
t+ (1 − t)µ(ξ) . (3.16)
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The final deformation field ϕ1 is computed by solving the ODE of step 4

d
dtϕt(ξ) = Vt(ϕt(ξ)) for t ∈ [0, 1], (3.17)

where ϕt : Ω × [0, 1] → Rd with ϕt(ξ) := ϕ(ξ, t) and with the initial condition ϕ0(ξ) = ξ.
Now, we can show that the solution ϕ1 satisfies (3.15). To this end, we define a

mapping H : Ω × [0, 1] → R by

H(ξ, t) = Jϕt(ξ) [t+ (1 − t)µ(ϕt(ξ))]

= det ∇ϕt(ξ) [t+ (1 − t)µ(ϕt(ξ))], (3.18)

where ϕt is the deformation field at time step t with an artificial time t ∈ [0, 1]. The
mapping H is defined such that H(ξ, t) at t = 0 evaluates to

H(ξ, 0) = (det ∇ϕ0(ξ))︸ ︷︷ ︸
=1

µ(ϕ0(ξ)) = µ(ξ), (3.19)

as ϕ0(ξ) is the identity mapping, thus ϕ0(ξ) = ξ, and therefore its Jacobian determi-
nant is equal to 1. For t = 1, H(t, ξ) evaluates to the Jacobian determinant of the
deformation ϕ1(ξ),

H(ξ, 1) = (det ∇ϕ1(ξ)) · 1 = det ∇ϕ1(ξ). (3.20)

By showing that

∂

∂t
H(ξ, t) = 0 (3.21)

for all t ∈ [0, 1] and for all ξ ∈ Ω, implying H(ξ, 0) = H(ξ, 1), and therefore

Jϕ1(ξ) = det ∇ϕ1(ξ)) = µ(ξ), (3.22)

thus the Jacobian determinant Jϕ1(ξ) for the final deformation ϕ1 is given by the moni-
tor µ(ξ) for all ξ ∈ Ω.

To aid readability, the ξ arguments are omitted in the remainder of this proof. We
compute the partial derivative ∂H

∂t by using the product rule for differentiation on (3.18),
resulting in

∂H

∂t
= ∂

∂t
[(det ∇ϕt)(t+ (1 − t)µ(ϕt))]

= ∂

∂t
[det ∇ϕt][t+ (1 − t)µ(ϕt)]

+ (det ∇ϕt)
∂

∂t
[t+ (1 − t)µ(ϕt)]. (3.23)

In order to compute ∂
∂t(det ∇ϕt), Abel’s lemma 3.4 is applied. First, we swap the order

of the gradient and the partial derivative,

∂

∂t
(∇ϕt) = ∇

(
∂ϕt

∂t

)
. (3.24)
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Applying (3.16) to the right hand side, we obtain

∇
(
∂ϕt

∂t

)
= ∇(Vt(ϕt)). (3.25)

Then, the chain rule for differentiation leads to

∇(Vt(ϕt)) = (∇ϕVt(ϕt))(∇ϕt). (3.26)

Combining the last steps shows that

∂

∂t
(∇ϕt) = (∇ϕVt(ϕt))(∇ϕt) (3.27)

holds, thus the matrices ∇ϕt and ∇ϕVt meet the requirements of Abel’s Lemma, which
we now use to compute

∂

∂t
(det ∇ϕt) = trace(∇ϕVt(ϕt))(det ∇ϕt). (3.28)

As trace(∇ϕVt(ϕt)) is the sum of the diagonal elements of the Jacobian ∇ϕVt(ϕt), we
obtain

trace(∇ϕVt(ϕt)) =
d∑

i=1

∂

∂(ϕt)i
(Vt(ϕt))i = divϕ Vt(ϕt), (3.29)

which is the divergence of Vt with respect to ϕ. Combining (3.28) and (3.29) leads to

∂

∂t
(det ∇ϕt) = (divϕ Vt(ϕt))(det ∇ϕt). (3.30)

This result can be plugged into (3.23):

∂H

∂t
= (divϕ Vt(ϕt))(det ∇ϕt)[t+ (1 − t)µ(ϕt)]

+ (det ∇ϕt)
∂

∂t
[t+ (1 − t)µ(ϕt)]. (3.31)

In the second term, ∂
∂t [t + (1 − t)µ(ϕt)] is computed by applying the chain rule for

differentiation on ∂
∂tµ(ϕt) and applying (3.17):

∂

∂t
µ(ϕt) = (∇µ(ϕt))⊤

(
∂

∂t
ϕt

)
= (∇µ(ϕt))⊤Vt(ϕt). (3.32)

Therefore, with the product rule for differentiation,

∂H

∂t
= (divϕ Vt(ϕt))(det ∇ϕt)[t+ (1 − t)µ]

+ (det ∇ϕt)[1 − µ(ϕt) + (1 − t)(∇µ(ϕt))⊤Vt(ϕt)]. (3.33)
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Factoring out det ∇ϕ, the derivative simplifies to
∂H

∂t
= (det ∇ϕt)

[
(divϕ Vt(ϕt))[t+ (1 − t)µ(ϕt)]

+ [1 − µ(ϕt) + (1 − t)(∇µ(ϕt))⊤Vt(ϕt)]
]
. (3.34)

The next few steps further simplify the derivative ∂H
∂t . By rearranging (3.16), we ex-

press V as

V = Vt[t+ (1 − t)µ], (3.35)

which we use to compute the divergence of V with the product rule for differentiation

divV = div(Vt[t+ (1 − t)µ])

= (div Vt)[t+ (1 − t)µ] + (1 − t)(∇µ)⊤Vt. (3.36)

This equation is rearranged to

(div Vt)[t+ (1 − t)µ] = divV − (1 − t)(∇µ)⊤Vt. (3.37)

Therefore,

(divϕ Vt(ϕt))[t+ (1 − t)µ(ϕt)] = divϕ V (ϕt) − (1 − t)(∇µ(ϕt))⊤Vt(ϕt), (3.38)

which is plugged into (3.34), leaving

∂H

∂t
= (det ∇ϕt)

[
(divϕ Vt(ϕt))[t+ (1 − t)µ(ϕt)] + [1 − µ(ϕt) + (1 − t)(∇µ(ϕt))⊤Vt]

]
= (det ∇ϕt)

[
divV (ϕt) − (1 − t)(∇µ(ϕt))⊤Vt(ϕt) + 1 − µ(ϕt) + (1 − t)(∇µ(ϕt))⊤Vt

]
= (det ∇ϕt)

[
divϕ V (ϕt) + 1 − µ(ϕt)

]
. (3.39)

As V is constructed such that divV = µ− 1, this leads to

divϕ V (ϕt) = µ(ϕt) − 1, (3.40)

resulting in
∂H

∂t
= (det ∇ϕt)(divϕ V (ϕt) + 1 − µ(ϕt))

= (det ∇ϕt)(µ(ϕt) − 1 + 1 − µ(ϕt))
= 0. (3.41)

Thus, together with (3.19) and (3.20), the main result

Jϕ1(ξ) = det ∇ϕ1(ξ) = µ(ξ) for all ξ ∈ Ω (3.42)

is proven. Consequently, the Jacobian determinant of the deformation field ϕ computed
by the moving mesh approach is defined by the monitor function µ. By choosing a posi-
tive monitor function, the moving mesh approach for grid generation results in a diffeo-
morphic deformation field ϕ. The remaining problem is to find a vector field V satisfying
divV (ξ) = µ(ξ) − 1 for all ξ ∈ Ω. We address this issue in the following section.
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3.2.1 The Div-Curl System

One of the main components in the moving mesh approach is the construction of a vector
field V satisfying step 2 of algorithm 1. There are different approaches to compute such
vector field [47]. One approach is based on solving Poisson equations. The condition
divV = µ− 1 alone does not ensure a unique solution for V , thus more constraints are
needed. As there are the two components V1 and V2 for the vector field V in the two-
dimensional case, at least two equations are necessary to obtain a unique solution. A way
to achieve this is by adding a constraint on the curl of the vector field with Dirichlet
boundary conditions [92]. The deformation field can be represented by the divergence
and curl (div-curl) system [16], leading to the set of equations

divV= ∂

∂ξ1
V1 + ∂

∂ξ2
V2 = µ− 1,

curlV= ∂

∂ξ1
V2 − ∂

∂ξ2
V1 = γ,

(3.43)

where γ : R2 → R is the curl of the final velocity field V1, and since

V1(ξ) = V (ξ)
1 + (1 − 1)µ(ξ) = V (ξ), (3.44)

γ is defined as

γ := curl(V ). (3.45)

Therefore, the curl of V remains the same, whereas its divergence is adapted according
to the monitor function.

To solve the div-curl system for V , it can be transformed into a set of Poisson equations,
where V1 and V2 are the components of the vector field V and therefore the target
variables. This result is described in [75]; we now present our computations for this
result. Again, for enhanced readability, the ξ arguments are omitted.

To obtain the Poisson equations, the Laplacians ∆V1 and ∆V2 are needed. Therefore,
the second order derivatives needed for ∆V1 and ∆V2 are computed using (3.43). The
first step to achieve a set of Poisson equations is to rearrange (3.43) to eliminate the
derivative of V1 in ξ1-direction

∂

∂ξ1
V1 = µ− 1 − ∂

∂ξ2
V2. (3.46)

To get the second order derivative, this result is differentiated

∂2

∂ξ2
1
V1 = ∂

∂ξ1

(
µ− 1 − ∂

∂ξ2
V2

)
= ∂

∂ξ1
µ− ∂2

∂ξ1∂ξ2
V2. (3.47)

Analogously, the derivative of V2 with respect to ξ2 can be expressed as

∂

∂ξ2
V2 = µ− 1 − ∂

∂ξ1
V1. (3.48)
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Differentiating this result, we obtain the second order derivative

∂2

∂ξ2
2
V2 = ∂

∂ξ2

(
µ− 1 − ∂

∂ξ1
V1

)
= ∂

∂ξ2
µ− ∂2

∂ξ1∂ξ2
V1. (3.49)

Now, we compute the partial derivative of the curl

∂

∂ξ1
curlV = ∂

∂ξ1

(
∂

∂ξ1
V2 − ∂

∂ξ2
V1

)
= ∂2

∂ξ2
1
V2 − ∂2

∂ξ1∂ξ2
V1 = ∂

∂ξ1
γ. (3.50)

The second-order partial derivative of V1 with respect to ξ2 is isolated

∂2

∂ξ2
1
V2 = ∂

∂ξ1
γ + ∂2

∂ξ1∂ξ2
V1. (3.51)

Analogously, the second order partial derivative of ξ1 is obtained by differentiating the
curl in ξ2-direction,

∂

∂ξ2
curlV = ∂

∂ξ2

(
∂

∂ξ1
V2 − ∂

∂ξ2
V1

)
= ∂2

∂ξ2∂ξ1
V2 − ∂2

∂ξ2
2
V1 = ∂

∂ξ2
γ, (3.52)

and rearranging the result to isolate the second-order derivative

∂2

∂ξ2
2
V1 = ∂2

∂ξ1∂ξ2
V2 − ∂

∂ξ2
γ. (3.53)

Combining (3.47) and (3.53), the Laplacian ∆V1 can be computed:

∆V1 = ∂2

∂ξ2
1
V1 + ∂2

∂ξ2
2
V1

= ∂

∂ξ1
µ− ∂2

∂ξ1∂ξ2
V2 + ∂2

∂ξ1∂ξ2
V2 − ∂

∂ξ2
γ

= ∂

∂ξ1
µ− ∂

∂ξ2
γ. (3.54)

For V2, combining (3.49) and (3.51) leads to

∆V2 = ∂2

∂ξ2
1
V2 + ∂2

∂ξ2
2
V2

= ∂

∂ξ1
γ + ∂2

∂ξ1∂ξ2
V1 + ∂

∂ξ2
µ− ∂2

∂ξ1∂ξ2
V1

= ∂

∂ξ2
γ + ∂

∂ξ1
µ. (3.55)
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Together, (3.54) and (3.55) lead to the set of Poisson equations
∆V1= ∂

∂ξ1
µ− ∂

∂ξ2
γ,

∆V2= ∂

∂ξ2
µ+ ∂

∂ξ1
γ,

(3.56)

with target variables V1 and V2 building the vector field V = (V1, V2). The vector
field V obtained by solving the set of Poisson equations with Dirichlet boundary condi-
tions satisfies divV = µ− 1.

3.2.2 Adaptation to Three Dimensions

The previous section covered the div-curl-system for the two-dimensional case. However,
the approach can be adapted to three-dimensional data, which we briefly explain. One
of the main changes is the div-curl system to compute the – now three-dimensional –
vector field V = (V1, V2, V3). As the curl of three-dimensional end velocity field γ is
three-dimensional as well, the div-curl system leads to four equations for three variables
V1, V2, and V3, leaving an overdetermined system of equations. Therefore, a dummy
variable θ is introduced with θ ≡ 0 in Ω and θ = 0 on ∂Ω to solve the system; more
details can be found in [13, 47]. The corresponding div-curl system is

divV = ∂V1
∂ξ1

+ ∂V2
∂ξ2

+ ∂V3
∂ξ3

= f1,

curl1 V = ∂θ

∂ξ1
+ ∂V3
∂ξ2

− ∂V2
∂ξ3

= f2,

curl2 V = ∂θ

∂ξ2
+ ∂V1
∂ξ3

− ∂V3
∂ξ1

= f3,

curl3 V = ∂θ

∂ξ3
+ ∂V2
∂ξ1

− ∂V1
∂ξ2

= f4.

(3.57)

Similarly to the two-dimensional case, the system can be converted to a set of three
Poisson equations 

∆V1= ∂f1

∂ξ1
+ ∂f3

∂ξ3
− ∂f4

∂ξ2
= F 1,

∆V2= ∂f1

∂ξ2
+ ∂f4

∂ξ1
− ∂f2

∂ξ3
= F 2,

∆V3= ∂f1

∂ξ3
+ ∂f2

∂ξ2
− ∂f3

∂ξ1
= F 3,

(3.58)

which can be solved with Dirichlet boundary conditions to obtain the vector field V .

3.3 The Moving Mesh Approach in Image Registration
In this section, we examine how the moving mesh grid generation is applied to image
registration. Therefore, we explain how the moving mesh approach is used to parame-
terise the deformation field. After that, the learning-based moving mesh approach for
deformable image registration by Sheikhjafari et al. that we implement and augment for
this thesis is presented.
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(a) (µ, γ) = (10, 0) (b) (µ, γ) = (0.1, 0) (c) (µ, γ) = (0.1, 1) (d) (µ, γ) = (10,−2)

Figure 3.1: Geometrical interpretation of two-dimensional deformation fields using dif-
ferent parameters for the Jacobian determinant µ and the curl of the final velocity field γ.
The relation of µ to the radial component (extension or shrinkage of the grid cells at the
centre) and of γ to the rotational component (twisting of the grid) of the deformation
field are observable (illustration credit: [14]).

3.3.1 Moving Mesh-Based Image Registration

Parameterisation of the Deformation Field
The moving mesh based image registration is categorised as parametric image regis-
tration, as the deformation field is parameterised as follows. By applying the moving
mesh grid generation to the image registration problem, the deformation field ϕ can be
entirely described by its Jacobian determinant µ and a curl of end velocity field γ. As
divV = µ − 1 holds, the deformation field is characterised by the divergence and the
curl, which are directly related to radial and rotational motion. Therefore, the result-
ing deformation fields are ideal to model the cardiac motion, as the movement of the
heart can be divided into radial and rotational movements. A geometrical interpretation
of two-dimensional deformation fields for different values of µ and γ are displayed in
figure 3.1.

The corresponding image registration problem can be stated as a constrained opti-
misation problem: for a given pair of discrete grey-valued images IF , IM : X → R,
find µ and γ parameterising ϕ, such that ϕ is the solution of

min
ϕ:Ω→Rn

L(IF , IM ◦ ϕ) (3.59)

under the constraints 
∫

Ω
µ(ξ) dξ = |Ω|,

τub ≥ µ(ξ) ≥ τlb > 0.
(3.60)

The first constraint ensures that the domain remains the same after the deformation,
while the parameters τlb and τub of the second constraint represent the lower and the
upper bound of the Jacobian determinant and therefore determine the range of allowed
deformation [64]. By forcing τlb to be positive, the deformation field is guaranteed to
be diffeomorphic, making it suitable for medical image registration, as tissue folding is
prevented [47]. In addition, constraining the Jacobian determinant preserves topology
and as the Jacobian determinant is related to cell volumes, the incompressibility of the
registered object is approximately ensured if τub and τlb are chosen close to 1 [14]. The
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smoothness of the deformation field is implicitly given by the parameterisation, leading
to plausible registration results.

Forward and Backward Deformation Field
For certain image registration problems it is important not only to find the deformation
field registering the moving image IM to the fixed image IF , but also the fixed to the
moving image. Since the deformation field computed by the moving mesh approach is
diffeomorphic and thus invertible, both deformation fields can be computed. As intro-
duced in section 2.3.6, the forward and the backward deformation field are denoted as
ϕf := ϕ1 and ϕb := ϕ−1

1 .
The moving mesh approach has the advantage that it allows for a simultaneous com-

putation of both deformation fields. The forward deformation field ϕf comes from the
ODE

d
dtϕt(ξ) = Vt(ϕt(ξ)), (3.61)

with the initial condition ϕ0(ξ) = ξ. The backward deformation field ϕb is computed by
solving the ODE with the negative, time-inverted velocity field −V(1−t), using the same
initial condition as for ϕf.

3.3.2 Learning-Based Deformable Cardiac Image Registration with the
Moving Mesh Parameterisation

Several applications of the moving mesh parameterisation to image registration prob-
lems have been proposed [14, 64, 42], as also discussed in section 1.2. Although these
approaches have shown promising registration results, the deformation fields are estab-
lished iteratively and therefore do not benefit from the advantages of machine learning, as
discussed in section 2.4.4. To the best of our knowledge, the first approach to apply ma-
chine learning to the moving mesh parameterisation was proposed in [75]. The authors
proposed an end-to-end unsupervised U-Net based approach for cardiac image registra-
tion using the moving mesh parameterisation of the deformation field. This approach is
a parametric deformable intensity-based image registration method with a guaranteed
diffeomorphic deformation field. As the method is unsupervised, ground truth for the
registration is not required.

Using the moving mesh parameterisation, the image registration problem can be stated
as the constrained optimisation problem (3.59). Sheikhjafari et al. solve this problem
using a U-Net, that learns the parameters µ and V and therefore implicitly γ of the
moving mesh parameterisation. The U-Net input are the fixed image IF and the moving
image IM . The output of the U-Net has three channels: one output channel represents
the now discrete monitor function µ, the remaining two represent the discrete vector
field V on the grid X . The problem is stated as

min
θ∈Rn

L(IF , IM , gθ(IF , IM )), (3.62)

where the U-Net models the function gθ with learnable parameters θ. The U-Net output
then is computed as (µ, V ) = gθ(IF , IM ).

As the monitor function needs to satisfy the conditions (3.60), the constraints are now
forced on the monitor function. If the boundaries of the Jacobian determinant τlb and τub
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Algorithm 2: Moving Mesh Based Deformable Image Registration [75]
Input: IF and IM : image pair to be registered,
τlb, τub: boundaries for Jacobian determinant
Output: ϕf, ϕb: forward and backward deformation fields
Step 1: pass the input to the U-Net to compute µ and V
Step 2: moving mesh approach:

Step 2.1: force constraints (3.60) on µ
Step 2.2: compute the curl of the velocity field V to obtain Poisson equations
Step 2.3: solve Poisson equations to obtain V , compute velocity field Vt

Step 2.4: solve ODEs to compute ϕf and ϕb
Step 4: compute the loss function
Step 5: update µ and V using back propagation

are positive, the resulting deformation field ϕ is diffeomorphic. Constraining the monitor
function is such a crucial aspect of the moving mesh approach that we dedicate chapter 4
to this problem.

To obtain ϕ, the constrained monitor function µnew and the vector field V are used to
perform the steps 2 to 5 in algorithm 1. The vector field satisfying step 2 is obtained by
solving the div-curl system as described in section 3.2.1. As described in the previous
section 3.3.1, the ODE of step 4 is solved twice to establish the forward deformation
field ϕf and the backward deformation field ϕb.

The next step is to warp the images; the results are used to evaluate the bidirectional
loss function

Ltotal(IF , IM , ϕf, ϕb) = 1
2 · L(IF , IM ◦ ϕf) + 1

2 · L(IM , IF ◦ ϕb), (3.63)

where L denotes a dissimilarity metric. The loss is then used to update µ and V via
backpropagation. Optimisation of µ and γ is performed with SGD.

A new image pair can be registered by evaluating the U-Net with the previously
learned parameters, computing µ and V for the image pair. By applying steps 2 to 5 of
algorithm 1, the forward and the backward deformation fields are established. Thus, to
register a new image pair, no additional optimisation is required.

An overview of the network architecture is displayed in figure 3.2; a summary of all
steps of the algorithm can be found in algorithm 2. The algorithm can be used for the
registration of two-dimensional and three-dimensional images, the main difference lies
in the div-curl system. The algorithm is designed for the registration of cardiac images
of the ES phase and the ED phase.

For this thesis, we implement the moving mesh approach as described by Sheikhjafari
et al. to validate the approach. Additionally, we augment their approach using an implicit
neural representation. The following section covers implementation details and the used
network architecture.

3.4 Implementation Details and Network Architecture
This section covers the implementation details and network architecture for our imple-
mentation of the moving mesh approach. First, we outline the implementation strate-
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Figure 3.2: End-to-end unsupervised network architecture. The U-Net gθ takes the
images IM and IF as input. Its output is the monitor function µ, describing the Jacobian
determinant of the deformation ϕ and the vector field V . Then, the moving mesh
approach is applied to the output. With the resulting forward and backward deformation
fields ϕf and ϕb, the registration is performed to compute the loss L to update µ and V
using back propagation (adapted from [75]).

gies used for solving the ODEs and PDEs within the moving mesh approach. Then,
the network architecture using a U-Net is described, followed by our augmentation us-
ing implicit neural representation. For our implementation, we use Python 3.7.6 with
PyTorch 1.13.1 [60].

3.4.1 Numerically Solving the PDEs

To obtain the vector field V satisfying divV = µ − 1, the vector field returned by
the U-Net is adjusted as described in section 3.2.1. To solve the system of Poisson
equations numerically, the Poisson equations are discretised as described in section 2.2.3.
Therefore, the first step is the computation of the two-dimensional DST of the right-
hand side of the Poisson equations. The DST is computed using the DFT for the
modified input as described in theorem 2.19. A faster implementation of the DFT can
be performed with the FFT, which is implemented by torch.fft.rfft. The Dirichlet
boundary conditions are implicitly enforced by using the DST.

In Fourier space, the solution is obtained by dividing by the diagonal entries of the –
now diagonal – operator. The solution in the real space of the Poisson is then obtained
by applying the two-dimensional inverse DFT.

3.4.2 Numerically Solving the ODEs

For the moving mesh approach, two ODEs need to be solved in order to obtain the
deformation fields ϕf and ϕb. Although Sheikhjafari et al. used the Euler method with
arbitrary time steps to integrate the vector field, in this thesis we use the fourth-order
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Runge-Kutta method with 3/8 rule [43, 72]. Due to the stiffness of the ODE and resulting
numerical issues of zero flow in the integration, the use of the Euler method did not lead
to usable results. The initial value problems for the ODEs are solved with the odeint
function from the torchfiffeq package using the method rk4 [15].

The forward deformation field ϕf is computed by solving the ODE with the velocity
field Vt. Analogously, the backward deformation field ϕb is computed by solving the
ODE with the negative time-inverted velocity field −V(1−t), as described in 3.3.

3.4.3 Discretisation and Interpolation

Interpolation is needed to compute the deformed images as well as to evaluate the
monitor function and the velocity field in between grid points. The bilinear interpolation
relies on the PyTorch function nn.functional.grid_sample. The padding mode is
chosen as “zeros” to match the Dirichlet boundary conditions. Only for the interpolation
of µ, the padding mode is set to “border”, as the values of µ should not be zero to
prevent grid folding. As the function expects normalised values between −1 and 1, the
computational domain is considered a cell-centred grid on [−1, 1]2.

3.4.4 U-Net and INR Architecture

One part of the moving mesh approach proposed by Sheikhjafari et al. is the U-Net
that generates the monitor function µ and the vector field V before applying the moving
mesh method. The U-Net used in this thesis is based on the VoxelMorph U-Net. Now,
the VoxelMorph U-Net architecture is briefly described. Additionally, the used network
parameters are provided.

For the U-Net implementation, we utilise the PyTorch backend of the VoxelMorph
framework, a U-Net framework for deformable parametric image registration [3, 4]. The
code is provided in [20]. The input to the framework are the grey-valued moving and
fixed images IM and IF , which are concatenated to form a two-channel input image. To
apply the moving mesh approach, a three-channel output is needed, consisting of one
channel for the monitor function µ and two channels for the vector field V .

We achieve this by choosing the same U-Net architecture as Sheikhjafari et al. [75]:
the encoder contains a convolutional layer with 16 kernels, followed by down-convolution
layers with 32, 64, and 64 kernels. The decoder performs up-convolutions with 64, 64, 32,
32, 32, 16, and 3 kernels. All kernels are of size 3 × 3. The optimisation of the kernel
elements is performed with SGD and Adam optimisation, as all steps are designed to be
differentiable [41]. The function parameters are shared, and therefore optimised globally
for all training images. The used loss function is

Ltotal(IF , IM , ϕf, ϕb) = 1
2 · L(IF , IM ◦ ϕf) + 1

2 · L(IM , IF ◦ ϕb), (3.64)

where we use the MSE as the dissimilarity metric L. In the last U-Net layer, we replace
the leakyReLU activation function in the channel representing the monitor function by
our new activation function that bounds the values of µ to [τlb, τub]. We introduce the
new activation function in section 4.2.1.

The VoxelMorph input generator randomly chooses two input images for the training.
For this thesis, images of the ED and the ES of the same patient and the same cardiac
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cycle are registered. Therefore, the data generator is modified to match a randomly
chosen images from the training set with its corresponding ED image, if the image is an
ES image, or vice versa.

Although the VoxelMorph framework is designed for two- and three-dimensional input
data, some adaptations are made to use the framework for two-dimensional images.
Issues of the gradient function with two-dimensional inputs are resolved by using [1].

3.4.5 Moving Mesh Approach Using INR

As an additional validation tool for the moving mesh approach, we use INR, as it is
more robust and – compared to U-Net – its registration accuracy does not depend on
the training data set as the optimisation is performed for each image pair individually.
For the implementation, we replace U-Net with a SIREN network. The SIREN network
learns a continuous representation of the monitor function µ and the vector field V that
are then processed with the moving mesh approach. The used SIREN network consists
of five 512-dimensional layers.

Instead of directly using the images, the input to the SIREN network is a coordinate
representation of the images. The image coordinates are forwarded in column-major
representation. The activation functions for SIREN are mainly sine functions, where the
frequency of the sine of the first layer w0-initial is set to 10. For the final activation
function, we choose the identity function instead, as the final output should not be
restricted to the range [−1, 1]. Additionally, to constrain the values of µ to [τlb, τub],
we apply our new activation function to the monitor function. This activation function
as well as the constraining methods for the monitor function are discussed in the next
chapter.
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Constraining the Monitor Function
The monitor function plays a crucial role in the moving mesh-based image registration, as
it parameterises the deformation field. An important part of the moving mesh approach
is the adaptation of the monitor function. As discussed in 3.3.1, in order to receive a
diffeomorphic deformation field, the monitor function µ needs to satisfy the conditions

∫
Ω
µ(ξ) dξ = |Ω|,

τub ≥ µ(ξ) ≥ τlb > 0.
(4.1)

As no further details on satisfying these constraints are provided by Sheikhjafari et al.,
three different approaches for constraining the monitor function are proposed in this
chapter. In section 4.1, two methods based on prior work using clamping and simple
scaling are described. Additionally, we develop a new approach to satisfy the conditions
in section 4.2. We build a new activation function based on the Sigmoid function to
avoid the use of the clamp function in 4.2.1. Additionally, we design a new approach to
scaling of the monitor function in 4.2.2.

4.1 Constraining by Cropping and Scaling

4.1.1 Cropping and Scaling Once

As described by Chen et al. [14], the first approach consists of clamping and scaling of
the monitor function. The clamping is performed by

µc(ξ) := clamp(µ(ξ)) = min(max(µ(ξ), τlb), τub) for all ξ ∈ Ω, (4.2)

followed by scaling the clamped monitor function µc with

µnew(ξ) = µc(ξ)
|Ω|∑

ξ′∈Ω
µc(ξ′) for all ξ ∈ Ω. (4.3)

With this approach, the integration constraint is satisfied, but the scaling can change
the monitor function such that some of its values might exceed [τlb, τub]. Hence, this
approach suggested in the literature does in fact not guarantee that both constraints are
satisfied.
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4 Constraining the Monitor Function

4.1.2 Constraining by Repeated Cropping and Scaling

As the previous approach does not necessarily satisfy both conditions, we introduce a
slight extension of the previous approach. Therefore, we repeatedly clamp and scale the
monitor function until either the monitor function satisfies∣∣∣∣∫

Ω
µ(ξ) dξ − |Ω|

∣∣∣∣ ≤ 10−8 (4.4)

after clamping, or a maximum of 25 iteration is performed. Although the altered monitor
function should satisfy the constraint (3.60) in more cases than the previous approach, it
is still not guaranteed that both constraints are satisfied. For a high number of iteration,
the repeated clamping leads to larger constant regions of µ, which results in vanishing
gradients in this area. The vanishing gradients can interfere with optimisation performed
with gradient descent.

4.2 New Approaches to Constrain the Monitor Function
Both of the previous approaches do not necessarily satisfy both conditions at the same
time. To avoid this problem, we introduce a new approach to avoid the use of the
clamping function in 4.2.1 and a new approach for the scaling of the monitor function
in 4.2.2.

4.2.1 Avoiding Clamping by Using a New Activation Function

So far, the clamping function is used to satisfy the second condition of (3.60). As the
simple clamping might change the behaviour of the monitor function, we develop a new
approach to satisfy the second condition of (3.60). For this approach, we apply a
new activation function σnew : R → R on the last layer of the U-Net on the channel
representing the monitor function to ensure µ is bounded by τlb and τub, avoiding the
use of the clamping function. To this end, an activation function based on the Sigmoid
activation function that bounds the values of µ to [τlb, τub] is employed.

The Sigmoid function evaluates to values in (0, 1), and the value 0 is mapped to 0.5.
To satisfy the integration constraint, the monitor function needs to have a mean value
of 1. Therefore, a constant of 0.5 is added to the Sigmoid function σ, such that σ(0) = 1.
Due to the added constant, the Sigmoid function is bounded by [0.5, 1.5] for all x ∈ R.
Now, the aim is to find a function mapping the minimum value of the Sigmoid function
to τlb and the maximum value of the sigmoid function to τub. As τlb and τub are later
fixed to τlb = 0.2 and τub = 8.0, the activation function is specifically computed for these
values.

For that reason, we compute the coefficients of a third degree polynomial p : R → R,
p(x) = p3x

3 + p2x
2 + p1x+ p0, satisfying

p(1.0) = 1.0,
p(0.5) = τlb = 0.2, (4.5)
p(1.5) = τub = 8.0.

The degree of the polynomial is chosen one degree higher than the number of equations
such that the remaining degree of freedom can be adapted to ensure p is monotonically
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Figure 4.1: The monotonically increasing polynomial p−2 (left) that is plugged into
the shifted Sigmoid function to establish the new activation function σnew (right). The
new activation function does not exceed τlb and τub and preserves the monotony of the
Sigmoid function.

increasing in the interval [0.5, 1.5]. Otherwise, the monotony of the Sigmoid function
might not be preserved.

This results in an underdetermined system of three linear equations

p(1.0) = p3 + p2 + p1 + p0 = 1.0,
p(0.5) = 1

8p3 + 1
4p2 + 1

2p1 + p0 = 0.2,
p(1.5) = 27

8 p3 + 9
4p2 + 3

2p1 + p0 = 8.0.
(4.6)

The polynomials

pr(x) =
(112

15 − 4
3r
)
x3 +

(
−10 + 4r

)
x2 +

(53
15 − 11

3 r
)
x+ r (4.7)

for r ∈ R satisfy (4.6). For r = −2, the derivative

p′
r(x) =

(112
5 − 4r

)
x2 +

(
−20 + 8r

)
x+

(53
15 − 11

3 r
)

(4.8)

is positive for all x ∈ [0.5, 1.5], resulting in a monotonically increasing pr. Using the
polynomial

p−2(x) = 152
15 x

3 − 18x2 + 163
15 x− 2 (4.9)

leads to the new activation function

σnew(x) = p−2(σ(x) + 0.5)

= 152
15 (σ(x) + 0.5)3 − 18(σ(x) + 0.5)2 + 163

15 (σ(x) + 0.5) − 2, (4.10)
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satisfying (4.5), since

σnew(0) = 1,

lim
x→∞

σnew(x) = 8, (4.11)

lim
x→−∞

σnew(x) = 0.2.

The polynomial p−2 is displayed in figure 4.1a, the new activation function σnew is
displayed in figure 4.1b.

4.2.2 New Approach to Scaling

To avoid the afore mentioned issues arising from iteratively constraining µ, we develop a
new approach to scale the monitor function, ensuring that the conditions (3.60) are satis-
fied without iterating. Due to the application of the new activation function, the monitor
function derived from the U-Net satisfies the condition that it is bounded by [τlb, τub].
Therefore, this approach focuses on scaling the monitor function to force the integration
constraint on µ.

In order to satisfy ∫
Ω
µ(ξ) dξ = |Ω|, (4.12)

the mean value of µ should be 1. This approach also matches the idea of volume preserv-
ing registration, as a mean of 1 of the Jacobian determinant forces the overall volume of
the registered object to remain the same, as the monitor function controls the Jacobian
determinant of the deformation field.

The approach distinguishes between the two possible cases after clamping µ:∫
Ω
µ(ξ) dξ ≥ |Ω| (4.13)

and ∫
Ω
µ(ξ) dξ < |Ω|. (4.14)

For the first case (4.13), the values of µ that are greater than 1 are scaled down, whereas
for the second case, the values of µ less than 1 are scaled up. Accordingly, the domain Ω is
divided into two disjoint subsets, defined as

Ω+ :=
{
ξ ∈ Ω

∣∣∣∣ µ(ξ) ≥ 1
}
,

Ω− :=
{
ξ ∈ Ω

∣∣∣∣ µ(ξ) < 1
}
,

(4.15)

with Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅. We choose the scaling factors such that the first
condition of (3.60) is satisfied after scaling µ, while ensuring that the scaling does not
interfere with the second condition. A visualisation of the approach for the first case is
displayed in figure 4.2. The scaling factors are computed as follows:
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Figure 4.2: Visualisation of the new approach to scale the monitor function µ in the
case (4.13). As the integral over µ is too big, the values of µ greater than 1 (hatched
area) are scaled down such that the conditions (3.60) are satisfied. The subset Ω+ is
visualised in orange, Ω− in yellow.

Proposition 4.1 (Scaling the Monitor Function, First Case). Assume that (4.13) holds.
Define the scaled monitor function µnew as

µnew(ξ) :=
{
α (µ(ξ) − 1) + 1 for ξ ∈ Ω+

µ(ξ) for ξ ∈ Ω− (4.16)

with scaling factor

α =
|Ω| −

∫
Ω−

µ(ξ) dξ −
∫

Ω+
1 dξ∫

Ω+
µ(ξ) − 1 dξ

. (4.17)

Then, µnew satisfies the first condition of (3.60), i.e.,∫
Ω
µnew(ξ) dξ =

∫
Ω+

α (µ(ξ) − 1) + 1 dξ +
∫

Ω−
µ(ξ) dξ = |Ω|. (4.18)

Proof. First, we introduce the following definitions to aid the readability:

µ+ :=
∫

Ω+
µ(ξ) dξ, µ− :=

∫
Ω−

µ(ξ) dξ,

|Ω+| :=
∫

Ω+
1 dξ, |Ω−| :=

∫
Ω−

1 dξ.
(4.19)
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The factor α is simplified by plugging in (4.19), leading to

α =
|Ω| −

∫
Ω−

µ(ξ) dξ −
∫

Ω+
1 dξ∫

Ω+
µ(ξ) − 1 dξ

= |Ω| − µ− − |Ω+|
µ+ − |Ω+|

. (4.20)

As the current case (4.13) implies that the mean of µ is greater than 1 for ξ ∈ Ω+, the
denominator of (4.20) is strictly positive.

Now, the integral of the adapted monitor function µnew is computed. First, we use
the linearity of integration, leading to∫

Ω
µnew(ξ) dξ =

∫
Ω+

α (µ(ξ) − 1) + 1 dξ +
∫

Ω−
µ(ξ) dξ

= α

(∫
Ω+

µ(ξ) dξ −
∫

Ω+
1 dξ

)
+
∫

Ω+
1 dξ +

∫
Ω−

µ(ξ) dξ. (4.21)

The terms can be simplified using (4.19),∫
Ω
µnew(ξ) dξ = α

(
µ+ − |Ω+|

)
+ |Ω+| + µ−. (4.22)

By plugging (4.20) into (4.22), the integral evaluates to∫
Ω
µnew(ξ) dξ = |Ω| − µ− − |Ω+|

µ+ − |Ω+|

(
µ+ − |Ω+|

)
+ |Ω+| + µ−

= |Ω| − µ− − |Ω+| + |Ω+| + µ−

= |Ω|, (4.23)

which completes the proof.

Analogously, the monitor function is scaled in the second case:

Proposition 4.2 (Scaling the Monitor Function, Second Case). Assume that(4.14)
holds. The scaled monitor function µnew is defined as

µnew(ξ) :=
{
β (µ(ξ) − 1) + 1 for ξ ∈ Ω−

µ(ξ) for ξ ∈ Ω+ (4.24)

with scaling factor

β =
|Ω| −

∫
Ω+

µ(ξ) dξ −
∫

Ω−
1 dξ∫

Ω−
µ(ξ) − 1 dξ

. (4.25)

Then, µnew satisfies the first condition of (3.60), i.e.,∫
Ω
µnew(ξ) dξ =

∫
Ω−

β (µ(ξ) − 1) + 1 dξ +
∫

Ω+
µ(ξ) dξ = |Ω|. (4.26)

The proof is completely symmetric to the proof for the first case and therefore omitted.
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5
Numerical Results
In this chapter, the we present the numerical results of our implementation. First, we
introduce the Sunnybrook Cardiac Data used for analysing the implemented framework
in section 5.1. The section also covers the challenges that arise when using the data.

Following, we describe the evaluation metrics that are used for the quantitative analysis
of the registration results in section 5.2.

Next, we analyse the accuracy and basic functionality of the FFT-based Poisson solver
through three test cases along three different resolutions in section 5.3.

Then, the results of our implementation of the moving approach for image registration
using different approaches to constrain the monitor function are presented and discussed
in section 5.4: Firstly, the registration setup is briefly described in 5.4.1. Secondly,
the registration results of the U-Net implementation are provided and analysed in 5.4.2.
Thirdly, the registration results and analysis of the results for the moving mesh approach
using INR are provided in 5.4.3. Finally, a comparison between the moving mesh-based
registration with a U-Net and INR is provided in 5.4.4.

5.1 Data Set
In this thesis, the moving mesh approach is tested using the Sunnybrook Cardiac Data.
The same data set has been used by Sheikhjafari et al. and is publicly available [75].

The Sunnybrook Cardiac Data (SCD) consists of cine MR images of 45 patients,
categorised into the following four pathological groups: heart failure with infarction,
heart failure without infarction, left ventricular hypertrophy, and healthy controls [66].
Of the 45 patients, nine belong to the group of healthy patients, the other pathological
groups consist of twelve patients each.

For each patient, both short-axis and long-axis MR images are provided that were
acquired by the same 1.5 T MRI scanner. For the experiments in this thesis, we use the
SAX images as the focus lies on the registration of the LV. In addition to the images,
the data set includes hand-drawn contours of the LV for the ED and ES images. The
dataset of each patient consists of 20 images covering an entire cardiac cycle, beginning
with the ED phase [73].

The images are in the DICOM (Digital Imaging and Communications in Medicine)
format. They have a resolution of 256 × 256 pixels, with a slice thickness of 8 mm and
gaps of 8 mm between slices as well as a pixel spacing of 1.25 mm. The images exhibit
a high variability, as they show different slices, with a particularly high variation in the
background. Four exemplary images of the SCD are displayed in figure 5.1, where two
different background types are observable. The entire data set consists of 395 pairs of
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(a) ED patient 1. (b) ES patient 1. (c) ED patient 2. (d) ES patient 2.

Figure 5.1: Exemplary images of the SCD at ED and ES phase of two patients [66]. The
high variation of the background of the images as well as the high variation of the LV
volume between the ED and the ES phase are observable.

ED and ES images.

Preparation of the SCD
As the VoxelMorph framework does not support DICOM images for training, the image
are converted to npz files before usage. Following the description of Sheikhjafari et al.,
the data is divided into a training, a validation, and a test set, each consisting of the
images of 15 patients. In order to avoid bias, an equal distribution of all pathological
groups across the training, validation, and test data set is ensured. Therefore, each
of the sets contains data of four patients from the pathological groups – heart failure
with infarct, heart failure without infarct, and hypertrophy – and three healthy patients.
This distribution is achieved by assigning every third patient into the training set, the
following patient into the validation set, and the remainder into the test set. This
distribution results in a training set of 127 image pairs, a validation set of 139 pairs, and
a test set of 129 pairs.

5.2 Evaluation Metrics
As the main focus of this thesis is the validation of the moving mesh approach proposed
by Sheikhjafari et al., we choose the same evaluation metrics to quantitatively analyse
the registration results [75]. The four metrics are now described.

5.2.1 Dice Metric

The Dice metric computes the overlap or the similarity of two regions [22]. The Dice
metric DM of two regions A and B can be computed by

DM(A,B) = 2|A ∩B|
|A| + |B|

. (5.1)

The Dice metric yields values in [0, 1], where a value of 1 indicates a complete overlap
of the two regions, whereas a values of 0 indicates no similarity of the two regions.

For the experiments in this thesis, the given regions are the segmentation masks of
the LV of the fixed image and the deformed moving image and vice versa. As the data
sets come with coordinates of the contours of the left ventricle, a segmentation mask is
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generated of the given contours coordinates using the cv2.fillPoly function. The Dice
metric is computed using the Dice Metric from the VoxelMorph framework. The seg-
mentation masks are then registered to compute the DM of the registered segmentation
of the moving image to the segmentation of the fixed image.

Although the images of the SCD are cropped to a resolution 128×128, the Dice metrics
remain comparable to those obtained by Sheikhjafari et al., as the segmentation region
is entirely contained in this region. The larger images consist of more background that
remains mainly undeformed by the registration and therefore does not effect the Dice
metric.

5.2.2 Hausdorff Distance

The Hausdorff distance measures the maximum distance between the contours of two
objects [38]. In practise, we obtain the directed Hausdorff distance H̃D of two objects A
and B by computing the maximum distance of a list of their corresponding contour
points CA and CB, i.e.

H̃D(A,B) = max
p∈CA

{
min
q∈CB

d(p, q)
}
, (5.2)

where d(·) denotes the Euclidean distance. The undirected Hausdorff distance is then
computed by

HD(A,B) = max
{

H̃D(A,B), H̃D(B,A)
}
. (5.3)

To evaluate the accuracy of cardiac registration, regions A and B are the segmen-
tations of the LV. The directed Hausdorff distance is implemented using the scipy
function spatial.distance.directed_hausdorff [82]. The undirected Hausdorff dis-
tance is then computed by taking the maximum of the two directed Hausdorff distances.
As the scipy.spatial.distance.directed_hausdorff function needs the coordinates
of the segmentation masks, the coordinates of deformed images are computed using
skimage.measure.find_contours.

With the same explanation as provided for the Dice metric, the Hausdorff distance is
not affected by the cropping of the images in our setup.

5.2.3 Reliability

The Reliability compares the Dice metrics of all image pairs of a data set and computes
the (statistical) probability of obtaining a Dice metric greater than δ:

R(δ) = Pr(DM > δ)

= # images segmented with a DM higher than δ

# images , (5.4)

with δ ∈ [0, 1], as the Dice metric is restricted by [0, 1] [75]. The Reliability shows how
reliable an algorithm performs for a given accuracy δ. Following Sheikhjafari et al., we
set δ to 0.75.
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5.2.4 Jacobian Determinant of the Deformation Field

As described in 2.3.6, the Jacobian determinant can be used to examine whether a de-
formation field is diffeomorphic and therefore, the appearance of mesh folding can be
examined. As the moving mesh approach should generate a diffeomorphic deformation
field, we validate this by computing its Jacobian determinate, using torch.gradient
and torch.det for the computation.

5.3 Examination of the FFT Poisson Solver
The FFT-based Poisson solver plays a critical role in the moving mesh approach to adjust
the vector field V according to the description in section 3.2.1. To ensure the accuracy
and efficiency of the implemented solver, we evaluate the solver independently from the
registration, using three distinct test functions across three different grid resolutions.

FFT Solver Test Setup
For our tests, the computational domain is modelled as a discrete equidistant grid of size
d × d, where d represents the grid resolution. The tests are performed with resolutions
d = 64, d = 128, and d = 256. These varying grid sizes allow the analysis of the
solver’s performance and robustness, and provide insight into its computational efficiency
and accuracy with increasing resolution. The solver is tested using Dirichlet boundary
conditions that are implicitly applied through the DST, as described in 2.2.3.

We evaluate the FFT Poisson solver by solving the Poisson equations ∆u = Fi for
three distinct right-hand sides Fi, i = 1, . . . , 3, where each test is designed to examine
different aspects of the FFT solver’s performance:

1. The first test is the simple case of a constant field

F1(x, y) ≡ 1. (5.5)

This scenario serves as a baseline test to verify the basic functionality of the FFT
solver. It is particularly useful for identifying larger errors that may arise from
discretisation.

2. The second test case is the sinusoidal field

F2(x, y) = −2
(
π

d

)2
sin
(
πx

d

)
sin
(
πy

d

)
, (5.6)

which is more complex than the first case. It is designed to test the solver’s
accuracy, particularly near the boundaries, and helps to evaluate how well the
solver maintains accuracy as the grid resolution increases.

3. The third test is to analyse the performance of the FFT solver for a discontinuous
field: we choose the step function

F3(x, y) =
{

1, x, y > d
2 ,

0, otherwise. (5.7)
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Table 5.1: Solution accuracy of the FFT Poisson solver. The accuracy is the absolute
value of the Laplacian of the computed solution and the initial right-hand side of the
Poisson equation. The Poisson equations were solved 10 000 times for each test case, the
reported results are the mean accuracy across these experiments.

d = 64 d = 128 d = 256
|F1 − ∆F̃1| 5.55 × 10−5 2.27 × 10−4 1.21 × 10−3

|F2 − ∆F̃2| 1.80 × 10−7 1.70 × 10−7 2.20 × 10−7

|F3 − ∆F̃3| 1.57 × 10−5 6.42 × 10−5 3.22 × 10−4

Table 5.2: Run times tFi of the FFT Poisson solver in milliseconds for the three test
function Fi, i = 1, . . . , 3, across the three grid resolutions d = 56, d = 128, and d = 256.
The run times are the average run time over 10 000 solved Poisson equations.

d = 64 d = 128 d = 256
tF1 1.10 ms 1.66 ms 3.63 ms
tF2 1.11 ms 1.67 ms 3.63 ms
tF3 1.15 ms 1.69 ms 3.74 ms

The discontinuity of the step function can be challenging for the solver, as such
abrupt changes can lead to unwanted numerical artefacts. As discontinuities fre-
quently occur in images such as the later used Sunnybrook Cardiac Data, it is
essential to test the solver’s robustness for these scenarios.

To analyse the run time of the FFT solver, we execute each experiment 10 000 times,
testing all combinations of test functions and resolutions.

FFT Solver Results
Table 5.1 presents the mean accuracies |Fi − ∆F̃i| for the FFT Poisson solver for the
different test cases i = 1, . . . , 3. The mean accuracies for F1 range between 5.55 × 10−5

for the lowest resolution and 1.21 × 10−3 for the highest resolution. For the second test
case, the mean accuracies show similar results around 2 × 10−7 for all resolutions. The
third test case shows mean accuracies between 1.57 × 10−5 and 3.22 × 10−4.

In table 5.2, the average run times required to solve a single Poisson equation for the
three different test functions across the three grid resolutions are presented. The run
times range from 1.10 ms to 1.15 ms for the resolution d = 64, from 1.66 ms to 1.69 ms
for d = 128, and from 3.63 ms to 3.74 ms for the highest resolution d = 256.

The outcomes of the Poisson equation for the constant field F1 is visualised in figure 5.2,
the results of the sinusoidal field F2 are displayed in figure 5.3, and the results for the
step function F3 are shown in figure 5.4.

Discussion of the FFT Solver Results
For constant field F1, the expected solution is a quadratic function with a positive curva-
ture. The computed solutions F̃1 align with these expectations, as shown in the second
column of figure 5.2. The homogeneous Dirichlet boundary conditions ensure that the
solutions is zero at the boundaries, which is accurately reflected in the results. Addi-
tionally, the Laplacian of the solution should yield a constant field, which is observable
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Figure 5.2: Solutions of the Poisson equation using the FFT solver for the constant
right-hand side F1. Each row corresponds to a different grid resolution with resolutions
of d = 64, d = 128, and d = 256. In the first column, the constant field F1 is displayed,
the second column shows the computed solution F̃1. The third column presents the
Laplacian of the computed solution, the final column shows the absolute difference of F1
and the Laplacian of the computed solution F̃1. The solution shows the expected negative
quadratic behaviour and tends to zero at the boundary. The Laplacians of the solution
show the expected behaviour, being a constant field as F1. The absolute error |F1 −∆F̃1|
increases with increasing resolution, showing slightly larger errors around the centre.
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Figure 5.3: Visualised results of the FFT solver for the right-hand side F2, compare
figure 5.2. The computed solution shows the expected positive sine function and tends
to zero at the boundary. The absolute error |F2 − ∆F̃2| look about evenly distributed
over the entire domain, showing its maximum around the centre.
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Figure 5.4: Visualised results of the FFT solver for right-hand side F3, compare figure 5.2.
In the first column, the step function is visualised. The solutions show a steep slope close
to the step. The Laplacians ∆F̃3 show the expected step. The absolute error |F3 − ∆F̃3|
increases with increasing resolution and is slightly higher in the top right corner.
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in the third column in figure 5.2. The absolute errors of F1 and ∆F̃1 remain approx-
imately constant on the entire domain, showing slightly higher values in the centre of
the domain, which is visible in the last column of figure 5.2. The absolute errors are
approximately doubled for doubled resolution.

The function F2 is one negative sinusoidal wave, therefore, the expected solution is a
symmetric, positive sinusoidal wave with a peak in the centre of the domain, and fading
to zero close to the boundary. This behaviour is observable in the second column of
figure 5.3. Additionally, the solution satisfies the Dirichlet boundary conditions as it
reaches zero at the boundary. The total errors for this test function are very similar for
all three resolutions, as observable by table 5.1. The highest accuracy errors occur at
the minimum of the sine waves, which is observable in the last column of figure 5.3, but
the total errors remain small, being around 2 × 10−7. Due to the smooth and periodic
characteristics of the sine function, the solution should not show larger artefacts, which
is satisfied.

Although the step function F3 is discontinuous, the solution of the corresponding
Poisson equation is expected to be smooth on the domain. Due to the step, the solution is
expected to show a steep slope in the area of the step. This behaviour is clearly observable
for the computed solutions that are displayed in the second column of figure 5.4. Again,
the homogeneous Dirichlet boundary conditions are satisfied. The absolute errors of F3
and ∆F̃3 approximately double with increasing resolution.

Overall, the solver shows the highest accuracy for the sinusoidal wave function F2,
with mean errors in the order of 2 × 10−7. The constant field F1 produces slightly larger
errors compared to the step function F3, however, they show the same behaviour of
increasing errors for increasing resolution. The difference in solution accuracy can be
attributed to the nature of the DST underlying the FFT-based solver. As a constant
field does not have any oscillating characteristics, it is challenging for the FFT solver
to compute the optimal coefficients of the sine frequencies composing the solution. In
contrast, the sinusoidal wave can be naturally described by sine waves, leading to a
more accurate computation of the coefficients. Despite the sharp discontinuity in F3,
the FFT solver manages to produces relatively accurate results for F3. The step can be
decomposed using a series of sine waves with varying frequencies, explaining the slightly
better performance of the FFT solver on the step function than on the constant field.
For F1 and F3, it is observable that the absolute errors of the Laplacian of the computed
solution are roughly doubled when the input dimension is doubled, whereas the errors of
F2 remain relatively stable. This trend indicates the expected decrease of the accuracy
with increasing resolution; the consistent accuracy observed in the sinusoidal field can
be attributed to its alignment with the underlying DST properties.

The run times show a similar trend for all three test cases. For the same resolution,
the solver takes about the same time, which is the expected outcome. The time increases
with increasing resolution, however, the solver is efficiently fast for our use.

In summary, the FFT solver shows the expected behaviour for all of our test cases,
demonstrating both robust performance and accuracy across different scenarios while
maintaining computational efficiency for increasing resolution. Therefore, it is suitable
for the application to the moving mesh image registration.
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5.4 Examination of the Moving Mesh-Based Image Regis-
tration

5.4.1 Setup

To validate the moving mesh approach by Sheikhjafari et al., the following experiments
are performed. We perform image registration to test the moving mesh approach using a
U-Net and an INR with different methods to constrain the monitor function, as described
in chapter 4. The following methods to constrain the clamped monitor functions are
tested and evaluated:

1. scaling once,

2. repeated clamping and scaling,

3. the new scaling approach,

4. no further scaling.

The clamping is performed using our new activation function; the parameters to clamp
the monitor function are set to τlb = 0.2 and τub = 8.0. The proposed methods are
evaluated on the test set of Sunnybrook Cardiac data, focusing on the registration of
images from the ES and the ED phase.

Although Sheikhjafari et al. performed the registration on the entire images, in this
thesis, the images are cropped to a resolution of 128 × 128 pixels to lay the focus of the
registration on the LV region, as the training set is relatively small. Additionally, this
approach enhances the speed of the training process.

As Sheikhjafari et al. did not provide any information on the number of steps they used
to solve the ODE, we test two step sizes: 10 time steps and 20 time steps as proposed by
Chen et al. [14]. The tests are performed on an NVIDIA A100 GPU with 80GB memory
using CUDA 12.0.

5.4.2 Registration Using a U-Net

U-Net Setup
To validate the moving mesh approach, the U-Nets are trained using the following set-
tings. Deviating from the proposed learning rate of 5 × 10−4, we choose a learning rate
of 1 × 10−4, as pre-tests have shown better results for this learning rate. The U-Net
is trained using the training set with 500 epochs with 100 steps per epoch. Every ten
epochs, the model is evaluated on the validation set. The model performing best on the
validation set is selected to perform the registration on the test set.

U-Net Registration Results
The registration using the moving mesh approach with a U-Net shows the following
results. In figure 5.5, the validation loss for of the U-Net training process for the scaling
once method and 10 ODE steps is displayed. The displayed loss function is exemplary
for all U-Net losses as they show similar behaviours. The models showing minimal loss
– thus performing best – on the validation set is selected to perform the registration on
the test set.

62



5 Numerical Results

0 100 200 300 400 500
epoch

0.0021

0.0022

0.0023

0.0024

0.0025
va

lid
at

io
n 

lo
ss

validation loss

Figure 5.5: Validation loss of the U-Net training process for the scaling once method
and 10 ODE steps. The horizontal axis represents the training epoch, the vertical axis
represents the loss that the model achieves on the validation data. The loss is computed
using the same loss function as used for training. This particular approach shows the
lowest validation loss in epoch 220, therefore, this model is chosen to evaluate the reg-
istration. The validation losses for other constraining methods show similar trends.

Figure 5.6 shows the registration outcomes for the different constraining methods on
the same image pair, while figure 5.7 shows exemplary registration results for the new
constraining method on four image pairs. Additionally, table 5.3 presents the numerical
registration results. The average MSE for the undeformed test data is 0.0054 ± 0.007.
All methods demonstrate lower MSE values compared to the input data, with the scaling
once approach yielding an average MSE of 0.0038, and the new scaling method achieving
an average MSE of 0.0041. No relevant difference in the average MSE between the
forward deformations and the backward deformations is observable.

For the input images, the DM is 0.72 ± 0.18. The scaling once and the new scal-
ing method both achieve an average DM of 0.75 for the forward deformations and the
backward deformations. The iterative and the no scaling approach achieve slightly lower
average DM values of 0.73 and 0.74 for the forward and the backward deformation fields.

The average HD for the input images is 8.79±4.03. Most approaches show an increase
in the HD, with the backward deformation field of the iterative constraining method
reaching 9.92. Notably, only the scaling once method shows a decrease in the HD,
achieving 8.61 in the forward deformation and 8.34 in the backward deformation.

The reliability across all approaches varies between 0.50 and 0.59, with stronger dif-
ferences between the forward and the backward deformation for the scaling once and
the new scaling method. The input images have a reliability of 0.5. The percentage
of negative Jacobian determinants varies between 0.00% and 0.19%, with higher values
occurring in the forward deformations.

Figure 5.8 shows the number of iterations required by the iterative method to meet
the stopping criteria. The average number of iterations performed for the U-Net model
with 10 ODE steps is 1.43. Notably, the maximum number of iterations observed is 10.
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Figure 5.6: Registration results for the Sunnybrook Cardiac Data with a U-Net using the
four different methods for constraining the monitor function and 10 ODE steps. Each
row represents one constraining method. Top to bottom: scaling once, constraining
iteratively, new scaling method, no constraining. The first column shows the fixed image,
the second column the moving image. In the third column, the deformed moving image
after registration is displayed. The fourth column shows the segmentation masks of
the deformed moving image (yellow) and the segmentation of the fixed image (orange),
which should ideally agree. The deformation fields are displayed in the final column.
The four different methods lead to differing registration results. While the scaling once
and the iterative method show similar results, the other two methods show varying
segmentations. The no constraining method shows as expected less smooth results.
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Figure 5.7: Four registration results for the Sunnybrook Cardiac Data with a U-Net
registration using the new scaling method to constrain the monitor function and 10
ODE steps. The figure uses the same layout as figure 5.6. The first two rows show two
better registrations, with improved DM, while the last two rows, with decreased DM,
showing unwanted distortions of the left ventricle. The deformation fields of the two last
rows contain negative Jacobian determinants, indicating grid folding.
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Table 5.3: Quantitative evaluation of the registration results for the moving mesh-based
registration on the Sunnybrook Cardiac Data using a U-Net with 10 time steps in
the ODE. The models performing best on the validation set are evaluated on the test
set, the evaluation epoch of the chosen model as well as the constraining approach for
the monitor function are given in the first column.
The following metrics are used: the mean squared error (MSE), the Dice Metric (DM),
the Hausdorff distance (HD), with mean and standard deviation, the reliability R(0.75)
and the percentage of negative Jacobian determinants %|J | < 0. A higher DM and a
lower MSE and HD indicate more accurate registration results. The higher the reliability
R(0.75), the more images have a DM of 0.75 or higher. A lower percentage of negative
Jacobian determinant indicates less mesh folding.
The models are evaluated for the forward deformation field registering the moving image
and the backward deformation field registering the fixed image. The best performance
for the forward and the backward deformation are marked in bold for each metric.

constrain method
model evaluation metric forward backward

scaling once
model 220

MSE 0.0038 ± 0.004 0.0039 ± 0.004
DM 0.75 ± 0.17 0.75 ± 0.18
HD 8.61 ± 3.85 8.34 ± 3.58
R 0.59 0.57

%|J | < 0 0.02 0.00

iterative constraining
model 480

MSE 0.0041 ± 0.004 0.0043 ± 0.004
DM 0.73 ± 0.18 0.74 ± 0.18
HD 9.71 ± 4.35 9.92 ± 4.98
R 0.50 0.51

%|J | < 0 0.19 0.03

new scaling
model 290

MSE 0.0039 ± 0.004 0.0039 ± 0.004
DM 0.75 ± 0.18 0.75 ± 0.18
HD 8.94 ± 4.16 8.80 ± 4.04
R 0.57 0.57

%|J | < 0 0.04 0.0

no scaling
model 90

MSE 0.0041 ± 0.004 0.0040 ± 0.005
DM 0.74 ± 0.18 0.74 ± 0.18
HD 8.95 ± 4.58 8.71 ± 4.36
R 0.54 0.56

%|J | < 0 0.02 0.0
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Figure 5.8: This bar plot illustrates the distribution of iterations for iteratively con-
straining the monitor function using the U-Net model with 10 ODE steps. The horizon-
tal represents the number of iterations that are performed, whereas the vertical shows
the frequencies of these iterations. The algorithm stops if either the constraints (3.59)
are satisfied or the maximum of 25 iterations is performed. A cluster around one and
three iterations is observable. The average number of iterations is 1.43.
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Discussion of U-Net Registration Results
Among the tested methods, the scaling once method yields the best results across all
evaluation metrics, making it the most effective approach for U-Net registration. How-
ever, the new scaling method produces comparable results, particularly for the backward
deformation, although it performs slightly worse for the forward deformation. The it-
erative constraining method stands out with an overall poorer performance, especially
in reliability, as it has not improved in comparison to the input images. The no scaling
method outperforms the iterative methods, but yields poorer results than the scaling
once and the new scaling method.

The different scaling strategies lead to differing registration outcomes, as observable
in figure 5.6. This figure illustrates an example of a particularly challenging registration,
as the LV and other surrounding structures show strong variation. The variation in
the deformation fields highlights that, depending on the constraining method, different
deformations are learned. While the scaling once method does not lead to much defor-
mation for this example, the new constraining method and the no scaling method lead to
less smooth deformations, as they would be expected for a plausible registration result.

Although the iterative approach and the scaling once method are expected to show
similar results – especially with the knowledge that the average number of iterations is
1.43, with a maximum of 10 performed iterations – the iterative approach demonstrates
poorer performance. This may be attributed to the repeated clamping, which potentially
leads to a flattened monitor function and a slower learning process, thus yielding inferior
registration results.

The distribution shown in figure 5.8 can be seen as an indicator of how often the
scaling once method would violate the first condition of (3.60). For this example, both
conditions are satisfied after one iteration in around 70% of the cases.

Our new constraining method does not yield improved results, although the con-
straints (3.60) for the monitor function are satisfied after its application. As observable
in figure 5.7, the approach struggles with images showing a strong variation of the LV.
This is particularly observable in the third and the fourth row of the figure, where the
segmentations of the LV of the registered image (yellow) show uneven and irregular
results.

We are unable to validate the results reported by Sheikhjafari et al. for the moving
mesh-based image registration. The authors reported results of an average DM of 0.88, a
reliability of 0.90, and an average HD of 5.25. Several factors might explain our inferior
results:

• The authors do not specify how they constrain the monitor function, which plays a
crucial role in the moving mesh approach, making it challenging to achieve similar
results.

• Details regarding the data distribution are lacking. Their test image pairs have an
average DM of 0.62, whereas our test images have an average DM of 0.72, leading
to results that are not directly comparable. This also holds for the HD, where
their input images have a HD of 16.02 compared to our images with a HD of 8.79.

• Our training set is relatively small. Following their method, the SCD is divided
into three sets, consisting of 15 patients each. However, it is unclear whether their
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training included only the images of the ED and ES phase or if images of all cardiac
phases were used.

• Key details about the U-Net architecture and training are missing. This includes
the number of epochs and steps per epoch for the training process.

One of the key features of the moving mesh-based image registration is the guaranteed
diffeomorphic – and therefore folding-free – deformation field. However, for the U-Net
training, we cannot verify the folding-free registration, as nearly all methods yield defor-
mation fields containing at least some points with negative Jacobian. Among our tested
methods, the iterative method results in the highest percentage of points with negative
Jacobian. This behaviour is to some degree expected for all but the new approach, as
the constraints (3.60) are not necessarily satisfied after constraining. As the new scal-
ing approach should always satisfy both constraints, it can be assumed that the issue
arises due to small numerical errors. This assumption is supported by the fact that the
percentages are relatively low.

Notably, for the backward deformation fields only the iterative method shows points
with negative Jacobian. The reason for this behaviour remains unclear but could poten-
tially be related to the ODE solver. Another possible explanation is that the forward
deformation always registers the ED to the ES, while the backward deformation works
in the opposite direction. This could introduce different challenges for the registration,
explaining the generally slightly variation between the results for the forward and the
backward deformations.

The presence of negative Jacobian determinants indicates that some deformation fields
are not diffeomorphic. Moreover, the deformation fields displayed in figure 5.6 do clearly
not satisfy the required self-to-self-mapping, regardless of the choice of constraining
method. This issue could arise from implementation errors or numerical inaccuracies,
rather than being an issue of the moving mesh approach itself.

5.4.3 Registration Using Implicit Neural Representation

INR Registration Setup
The INR approach trains an individual model for each image pair of the test set. Each
model is trained with 500 optimisation steps and a learning rate of 5 × 10−4, we choose
the final model after 500 steps to evaluate the registration.

INR Registration Results
Table 5.4 presents the registration results using INR with the four different approaches
to constrain the monitor function, with 10 time steps for the ODE. All four approaches
yield similar results, with an average DM ranging between 0.77 and 0.78. The mean
MSE values range from 0.0024 to 0.0027, with lower values observed for the forward
deformation. The reliability ranges from 0.62 to 0.66, showing higher values in the
backward deformation across all four methods.

All approaches exhibit a small percentage of negative Jacobian determinants for the
forward deformation fields, with values of 0.1% and 0.02%. No points with negative
Jacobians occur in backward deformation fields.

The scaling once method achieves the lowest average HD for the forward deformations,
with a value of 9.08, while the new scaling method yields the lowest HD of 9.52 for
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Table 5.4: Quantitative evaluation of the registration results for the moving mesh-based
registration on the Sunnybrook Cardiac Data using an INR with 10 time steps in the
ODE, compare table 5.3.

method evaluation metric forward backward

scaling once

MSE 0.0024 ± 0.002 0.0026 ± 0.003
DM 0.77 ± 0.17 0.77 ± 0.18
HD 9.08 ± 4.72 9.67 ± 6.65
R 0.60 0.64

%|J | < 0 0.01 0.00

iterative constraining

MSE 0.0026 ± 0.003 0.0027 ± 0.003
DM 0.77 ± 0.18 0.77 ± 0.18
HD 9.31 ± 5.11 9.86 ± 6.68
R 0.60 0.64

%|J | < 0 0.02 0.00

new scaling

MSE 0.0025 ± 0.003 0.0027 ± 0.003
DM 0.78 ± 0.17 0.78 ± 0.18
HD 9.27 ± 5.21 9.52 ± 6.62
R 0.62 0.64

%|J | < 0 0.01 0.00

no scaling

MSE 0.0025 ± 0.003 0.0026 ± 0.003
DM 0.78 ± 0.18 0.78 ± 0.18
HD 9.33 ± 5.06 9.61 ± 6.75
R 0.64 0.65

%|J | < 0 0.02 0.00

the backward deformation fields. All four approaches yield higher HD values for the
backward deformations, where the iterative approach reaches the highest HD of 9.86.

Figure 5.9 shows the numbers of iterations for the iterative approach. A cluster around
one and three is observable. The average number of iterations is 1.42, the highest number
of performed iterations is 11. Visual results for the four different constraining approaches
are displayed in figure 5.10 and in figure 5.11, visual results of the new constraining
method are shown in figure 5.12.

Discussion of INR Registration Results
Among the four tested approaches, the no scaling method shows the best performance
in the DM and the reliability, while the new scaling method yields comparable results
for the DM, but with a lower reliability. Overall, the four constraining methods yield
similar results for all metrics, with the most notable variation observed in the HD. This
indicates that the choice of constraining method for registration using INR has a rather
small impact on the registration. This can be observed in figure 5.10, showing exemplary
the comparable registration results of the different constraining methods.

The exemplary results in figure 5.12 show the differing performance of the new scal-
ing method. While the first two rows show registrations with high overlap of the seg-
mentations, the last two rows show implausible results with strong contortion of the
segmentation, leading to high HD.
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Figure 5.9: This bar plot illustrates the distribution of iterations for iteratively con-
straining the monitor function using an INR with 10 ODE steps, compare table 5.8.
A cluster for one to three iterations is observable. The average number of iterations
is 1.42.

It might seem counter-intuitive that INR shows good results in the DM, while perform-
ing worse in the HD, even though both metrics evaluate the segmentations. This can
be explained by the HD’s sensitivity to outliers and boundary accuracy. For example,
the results displayed in figure 5.11 illustrate this: the segmentations show a relatively
high overlap, resulting in a high DM, but significant outliers in the top right corner of
all segmentations contribute to a high HD.

This can potentially be explained by the choice of the parameter w0, which is crucial
for the performance of the INR method, and could probably be improved through fur-
ther parameter testing. Ideally, the parameter is adapted for each new image pair. In
figure 5.11, the deformed images show contortions that might be caused by a poor choice
of the parameter w0. The outliers of the segmentation appearing in the same images
might also be caused by a poor choice of w0 for this specific image pair.

Again, we cannot confirm the diffeomorphic deformation fields of the moving mesh
approach, as clearly visible in figure 5.11. The deformation fields hurt the diffeomorphic
property especially in the bottom right corner. This fact is supported by the small
percentage of negative Jacobian determinants, where the forward deformation field shows
higher values for all four constraining methods than the backward deformations.

Regarding the iterative approach, most cases require in most cases only one and – less
frequent – two iterations. This might explain the similar results of the scaling once and
the iterative approach, as the approaches are equal if only one iteration is performed.
Nevertheless, the scaling once method outperforms the iterative method in the HD.
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Figure 5.10: Registration results for the Sunnybrook Cardiac Data with an INR using
the four different methods to constrain the monitor function and 10 ODE steps, compare
figure 5.6. Despite the use of four different methods to constrain the monitor function,
similar registration results are achieved across all approaches, with the exception of the
iterative method, which produces a slightly different deformation field. Overall, these
displayed results are an example of a better registration result.
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Figure 5.11: Registration results for the Sunnybrook Cardiac Data with implicit neu-
ral representation using the four different method to constrain the monitor function
and 10 ODE steps, compare figure 5.6. This figure displays an example of poor registra-
tion results, as all of the registrations show implausible distortions of the left ventricle.
Additionally, this registration demonstrates a high DM but a lower HD. While the seg-
mentations show an overall high overlap, the segmentations have strong outliers in the
top right corner.
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Figure 5.12: Registration results for the Sunnybrook Cardiac Data with INR using the
new constraining method for the monitor function and 10 ODE steps, compare figure 5.6.
The first two rows show examples of good registration results, while the last two rows
show examples where the method performed worse. The deformation fields of the last
two rows are clearly not diffeomorphic. They show strong irregularities from the expected
rather round shape of the LV, leading to implausible results.
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5.4.4 Comparison of the Registration Results Using a U-Net and INR

Now we compare the performance of the U-Net- and INR-based approaches. Overall,
the INR approach shows better registration results compared to the U-Net in terms of
the DM, the reliability, and the MSE, yet it fails to achieve the results proposed by
Sheikhjafari et al. While INR avoids many uncertainties associated with U-Net training
and achieves values in the DM up to 0.79, it still does not meet the reported DM of
0.88. Although the registration utilising INR demonstrates a higher DM than the U-Net
approach, the HD values are distinctly higher for all except the iterative approach. This
could be due to the outliers mentioned in the previous section.

The method used to constrain the monitor function appears less important for INR
than for the U-Net. This might be caused by the overall better performance of the INR
in comparison to U-Nets. As the INR directly trains on the individual image pair, it
is less dependent on the used data. The training set for the U-Net is relatively small,
which might explain its inferior results. In comparison to the INR, the U-Net performs
best on images that are similar to the training images, making INR more versatile for a
broader variety of images.

As the iterative approach requires the most time among our tested constraining meth-
ods and is outperformed in both, the U-Net and INR, it is probably the least useful
constraining method. The other three approaches yield similar results, with a slightly
better performance of the scaling once method.

Comparing the registration times of U-Net and INR is challenging due to their funda-
mentally different approaches. While the U-Net trains one model prior to the registra-
tion, allowing the registration of a new image pair with a single forward pass, the INR
trains a new model for each new image pair individually. In our setup, the U-Net trains
a model in approximately one hour and 15 minutes for 10 ODE steps, an unseen image
pair is then registered within approximately 0.04 seconds. Using INR, the registration
of an individual image pair includes the training time for a new model, taking up to
35 seconds for a new image pair. Therefore, the U-Net is more suitable for scenarios
requiring real-time registration, while INR is preferable when registration time is less
critical or the number of registrations is limited.

For the results with 20 ODE steps, we refer the reader to the appendix; the results are
displayed in table A.1 and table A.2, showing similar results to the results for 10 ODE
steps. Although we expected that more ODE steps would lead to more accurate ODE
solutions, our experiments do not show an improvement in the registration results for
the increased number of steps.
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Table 5.5: Training and registration times for U-Net and INR for 10 ODE steps and the
different constraining methods. All times are in seconds. For reference: 4500 seconds
are one hour and 15 minutes.

ODE
steps

constrain
method

U-Net
training

U-Net
registration

INR
registration

10

once 4490.4696 s 0.0434 s 33.4592 s
iterative 4690.5610 s 0.0437 s 35.8274 s

new 4450.3578 s 0.0435 s 33.7923 s
none 4879.9498 s 0.0435 s 34.1079 s
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6
Conclusion
The aim of this thesis was the validation and extension of the moving mesh algorithm
for deformable cardiac image registration proposed by Sheikhjafari et al. [75]. Our work
includes the implementation of an FFT-based Poisson solver and an evaluation of its
accuracy and run times. We tested the solver using three different functions across three
grid resolutions and could successfully verify the functionality, robustness, and efficiency
of the solver, which showed the expected results on all tests.

A critical part of the moving mesh approach is the constraining of the monitor func-
tion, which involves clamping and scaling of the monitor function. To address this, we
developed a new activation function that clamps the values of the monitor function to
the required range. The new activation function avoids the use of simply clamping the
values, and thus preserves the behaviour of the monitor function. Additionally, we ex-
plored four different methods to scale the monitor function. Two approaches perform
a simple global scaling, where one of these approaches performs the clamping and scal-
ing iteratively until both constraints are satisfied or a maximum number of iterations
is performed. We also introduced a new approach that adaptively scales the monitor
function depending on whether the integral is too large or too small: scaling it down in
the areas where it exceeds the prescribed mean value of one, or scaling it up in areas
where it falls below. To understand the importance of the scaling, we additionally tested
the registration without any scaling.

We performed the registration using a U-Net framework as proposed by Sheikhjafari
et al., and augmented this approach by replacing the U-Net with an implicit neural
representation. The registration results were validated on a benchmark data set. In our
implementation, the INR outperformed the U-Net in all metrics except the Hausdorff
distance. Our best results were achieved using an INR, with a Dice Metric if 0.78, a
reliability of 0.65 and a Hausdorff distance of 9.33. However, our implementation did
not match the registration results reported by Sheikhjafari et al., who achieved a Dice
metric of 0.88, a reliability of 0.90, and a Hausdorff distance of 5.25. Possible reasons
for this were discussed in section 5.4.4, including missing key information on their U-Net
set up and on the constraining of the monitor function, as well as the limited size of the
training data set. Additionally, the choice of the parameter w0 for the INR framework
might have contributed to worse performance. Moreover, the test data set distribution
was not comparable, leading to incomparable registration results.

While our new activation function successfully clamps the monitor function to the
desired range, further testing and comparison to the simple clamping function could
examine the influence of the clamping on the outcome of the registration.

Although a major advantage of the moving mesh-based registration is that the regis-
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tration can be performed without explicit regularisation, it could still potentially benefit
from regularisation. In the case of the registration of the left ventricle, penalising non-
smooth outlines could be beneficial, as we observed strong outliers from an expected
round shape in some cases. As the contours are provided for our data set, they could be
incorporated for the U-Net training process. For the INR approach, which optimises di-
rectly on the individual image pair, in practise the segmentations are usually unavailable,
and the regularisation could force smoothness of the deformation field.

Further testing of our implementation on a larger training set could help to determine
whether the observed errors are due to implementation issues or the limited size of the
data set. As the method proposed by Sheikhjafari et al. is also applicable to the regis-
tration of three-dimensional images, extending our implementation to three dimensions
could be a further next step.
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A
Appendix
A.1 Proof of Abel’s Lemma
Here, we show the proof of Abel’s lemma given by Liu [47], to which we add further
details.

Lemma A.1 (Abel’s Lemma). Let M(t) be a d×d matrix such that each element of the
matrix is differentiable on t, let d

dtM(t) be the matrix with the differentiated elements
of M(t). If d

dtM(t) = A(t)M(t), where A(t) is a d× d matrix, then

d
dt(detM(t)) = (traceA(t))(detM(t)).

Proof. To aid readability, the t arguments are omitted for the remainder of this proof.
Let M = (mij)d

i,j=1 ∈ Rd×d be an arbitrary matrix such that a matrix A ∈ Rd×d exists
satisfying

d
dtM = AM,

where the elements of d
dtM are denoted by d

dtM = (m′
ij)d

i,j=1 and the elements of A are
denoted by A = (aij)d

i,j=1.
A general representation of the determinant is given by the Leibniz formula for deter-

minants [25, Chapter 3],

det(M) =
∑

s∈Sd

(
sgn(s)

d∏
i=1

mi,s(i)

)
,

where Sd denotes the symmetric group of degree d and s ∈ Sd is a permutation with

sgn(s) =
{

+1, if s is an even permutation,
−1, if s is an odd permutation.

In order to to prove Abel’s lemma, det(M) is represented by the Leibniz formula

d
dt det(M) = d

dt
∑

s∈Sd

(
sgn(s)

d∏
i=1

mi,s(i)

)
.
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A Appendix

As the derivative of a sum is the sum of the derivatives and sgn(s) does not depend on t,
the term can be rearranged by moving the derivative into the sum

d
dt det(M) =

∑
s∈Sd

(
sgn(s) d

dt

d∏
i=1

mi,s(i)

)
. (A.1)

Now, the product rule for differentiation is applied. Using the product rule on a product
of d functions fi : R → R with i = 1, . . . , d, results in

d
dt

d∏
i=1

fi(t) =
d∑

j=1

 d
dtfj(t)

d∏
i=1
i ̸=j

fi(t)

 .
Applying this to (A.1) leads to

d
dt det(M) =

∑
s∈Sd

sgn(s)
d∑

j=1
m′

j,s(j)

d∏
i=1
i ̸=j

mi,s(i)

 .
Since sgn(s) is not depending on j and the sums are finite, the sums can be swapped

d
dt det(M) =

d∑
j=1

∑
s∈Sd

sgn(s) m′
j,s(j)

d∏
i=1
i ̸=j

mi,s(i)

 ,
where the term in the parentheses is the Leibniz formula for the matrix M with one
row consisting of the differentiated elements of M . Therefore, the derivative of det(M)
results in a sum of d determinants of modified versions of M , where in i-th row the
elements of M are swapped to their derivatives, leaving

d
dt det(M) =

∣∣∣∣∣∣∣∣∣∣
m′

11 m′
12 . . . m′

1d

m21 m22 . . . m2d
...

... . . . ...
md1 md2 . . . mdd

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
m11 m12 . . . m1d

m′
21 m′

22 . . . m′
2d

...
... . . . ...

md1 md2 . . . mdd

∣∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣∣
m11 m12 . . . m1d

m21 m22 . . . m2d
...

... . . . ...
m′

d1 m′
d2 . . . m′

dd

∣∣∣∣∣∣∣∣∣∣
. (A.2)

Now, under the assumption d
dtM = AM , the elements m′

ij in (A.2) can be replaced
by m′

ij = ∑d
k=1 aikmkj . Then, for the i-th determinant of (A.2), i = 1, . . . , d, the i-th

row can be simplified by subtracting aik times the k-th row, k = 1, . . . , d, k ̸= i, of the
i-th row. These operations do not change the determinants, as they are row equivalent
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operations, leaving the simplified determinants as

d
dt det(M) =

∣∣∣∣∣∣∣∣∣∣
a11m11 a11m12 . . . a11m1d

m21 m22 . . . m2d
...

... . . . ...
md1 md2 . . . mdd

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
m11 m12 . . . m1d

a22m21 a22m22 . . . a22m2d
...

... . . . ...
md1 md2 . . . mdd

∣∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣∣
m11 m12 . . . m1d

m21 m22 . . . m2d
...

... . . . ...
addmd1 addmd2 . . . addmdd

∣∣∣∣∣∣∣∣∣∣
.

The i-th determinant has the factor akk in the k-th row. Now using the multilinearity
of determinants, the terms reduce to

d
dt det(M) = a11 det(M) + a22 det(M) + · · · + add det(M)

= (a11 + a22 + · · · + add) det(M)

= (traceA)(detM),

which completes the proof for Abel’s lemma.
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A.2 Registration Results for 20 ODE Steps

Table A.1: Quantitative evaluation of the registration results for the moving mesh-based
registration on the Sunnybrook Cardiac Data using a U-Net with 20 time step in the
ODE, compare table 5.3.

constrain method
model evaluation metric forward backward

scaling once
model 490

MSE 0.0039 ± 0.004 0.0039 ± 0.004
DM 0.74 ± 0.18 0.75 ± 0.19
HD 9.05 ± 4.50 8.54 ± 4.05
R 0.51 0.53

%|J | < 0 0.02 0.01

iterative constraining
model 410

MSE 0.0043 ± 0.005 0.0044 ± 0.005
DM 0.74 ± 0.18 0.74 ± 0.18
HD 8.99 ± 4.37 8.75 ± 3.99
R 0.55 0.55

%|J | < 0 0.00 0.00

new scaling
model 270

MSE 0.0038 ± 0.004 0.0039 ± 0.004
DM 0.75 ± 0.18 0.76 ± 0.18
HD 9.12 ± 5.03 9.03 ± 4.59
R 0.57 0.55

%|J | < 0 0.01 0.00

no scaling
model 280

MSE 0.0038 ± 0.004 0.0038 ± 0.004
DM 0.75 ± 0.17 0.76 ± 0.19
HD 9.16 ± 4.17 9.35 ± 5.92
R 0.57 0.55

%|J | < 0 0.07 0.02
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Table A.2: Quantitative evaluation of the registration results for the moving mesh-
based registration on the Sunnybrook Cardiac Data using implicit neural representation
with 20 time step in the ODE, compare table 5.3.

constrain method evaluation metric forward backward

scaling once

MSE 0.0025 ± 0.003 0.0027 ± 0.003
DM 0.78 ± 0.18 0.78 ± 0.18
HD 9.14 ± 4.83 9.68 ± 7.22
R 0.62 0.64

%|J | < 0 0.02 0.00

iterative constraining

MSE 0.0026 ± 0.003 0.0028 ± 0.003
DM 0.77 ± 0.18 0.77 ± 0.18
HD 8.86 ± 4.57 9.44 ± 6.35
R 0.60 0.61

%|J | < 0 0.02 0.01

new scaling

MSE 0.0024 ± 0.002 0.0026 ± 0.003
DM 0.78 ± 0.18 0.78 ± 0.18
HD 9.25 ± 4.94 10.05 ± 7.30
R 0.64 0.64

%|J | < 0 0.01 0.01

no scaling

MSE 0.0024 ± 0.003 0.0026 ± 0.003
DM 0.78 ± 0.17 0.78 ± 0.18
HD 9.43 ± 5.87 9.62 ± 6.58
R 0.64 0.64

%|J | < 0 0.01 0.01

Table A.3: Training and registration times for U-Net and INR for 20 ODE steps and the
different constraining methods. All times are in seconds. For reference: 8100 seconds
are two hours and 15 minutes.

ODE
steps

constrain
method

U-Net
training

U-Net
registration

INR
registration

20

once 7729.9066 s 0.0681 s 61.4333 s
iterative 8211.6507 s 0.0679 s 64.3033 s

new 7794.6702 s 0.0682 s 62.3587 s
none 7765.3996 s 0.0681 s 61.2617 s
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Figure A.1: This bar plot illustrates the distribution of iterations for iteratively con-
straining the monitor function using a U-Net with 20 ODE steps, compare table 5.8. A
cluster for one to three iterations is observable. The average number of iterations is 1.44.
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Figure A.2: This bar plot illustrates the distribution of iterations for iteratively con-
straining the monitor function using an INR with 20 ODE steps, compare table 5.8. A
cluster for one to three iterations is observable. The average number of iterations is 1.42.
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